The automatic stealth task of military time-sensitive targets plays a crucial role in maintaining national military security and mastering battlefield dynamics in military applications.We propose a novel Military Time...The automatic stealth task of military time-sensitive targets plays a crucial role in maintaining national military security and mastering battlefield dynamics in military applications.We propose a novel Military Time-sensitive Targets Stealth Network via Real-time Mask Generation(MTTSNet).According to our knowledge,this is the first technology to automatically remove military targets in real-time from videos.The critical steps of MTTSNet are as follows:First,we designed a real-time mask generation network based on the encoder-decoder framework,combined with the domain expansion structure,to effectively extract mask images.Specifically,the ASPP structure in the encoder could achieve advanced semantic feature fusion.The decoder stacked high-dimensional information with low-dimensional information to obtain an effective mask layer.Subsequently,the domain expansion module guided the adaptive expansion of mask images.Second,a context adversarial generation network based on gated convolution was constructed to achieve background restoration of mask positions in the original image.In addition,our method worked in an end-to-end manner.A particular semantic segmentation dataset for military time-sensitive targets has been constructed,called the Military Time-sensitive Target Masking Dataset(MTMD).The MTMD dataset experiment successfully demonstrated that this method could create a mask that completely occludes the target and that the target could be hidden in real time using this mask.We demonstrated the concealment performance of our proposed method by comparing it to a number of well-known and highly optimized baselines.展开更多
为解决毫米波雷达在对多目标跟踪时目标近邻聚类失败导致的目标数目低估和跟踪精度下降问题,提出一种基于概率假设密度(probability hypothesis density,PHD)滤波器的量测集联合划分方法。利用带噪声密度空间聚类(density based spatial...为解决毫米波雷达在对多目标跟踪时目标近邻聚类失败导致的目标数目低估和跟踪精度下降问题,提出一种基于概率假设密度(probability hypothesis density,PHD)滤波器的量测集联合划分方法。利用带噪声密度空间聚类(density based spatial clustering of applications with noise,DBSCAN)算法对采集到的量测集进行初步划分。通过PHD滤波器的预测值判断初步划分的点云簇是否存在重叠簇。针对重叠簇,利用滤波器预测值改进高斯混合模型(Gaussian mixed model,GMM)聚类算法并进行子划分。在仿真和实际环境中进行算法测试,仿真结果表明,所提算法能正确划分并跟踪近邻的目标,相比其他算法具有更好的跟踪精度。实测结果进一步验证了该算法能够成功识别近邻目标数量并跟踪,具有一定的工程实践意义。展开更多
基金supported in part by the National Natural Science Foundation of China(Grant No.62276274)Shaanxi Natural Science Foundation(Grant No.2023-JC-YB-528)Chinese aeronautical establishment(Grant No.201851U8012)。
文摘The automatic stealth task of military time-sensitive targets plays a crucial role in maintaining national military security and mastering battlefield dynamics in military applications.We propose a novel Military Time-sensitive Targets Stealth Network via Real-time Mask Generation(MTTSNet).According to our knowledge,this is the first technology to automatically remove military targets in real-time from videos.The critical steps of MTTSNet are as follows:First,we designed a real-time mask generation network based on the encoder-decoder framework,combined with the domain expansion structure,to effectively extract mask images.Specifically,the ASPP structure in the encoder could achieve advanced semantic feature fusion.The decoder stacked high-dimensional information with low-dimensional information to obtain an effective mask layer.Subsequently,the domain expansion module guided the adaptive expansion of mask images.Second,a context adversarial generation network based on gated convolution was constructed to achieve background restoration of mask positions in the original image.In addition,our method worked in an end-to-end manner.A particular semantic segmentation dataset for military time-sensitive targets has been constructed,called the Military Time-sensitive Target Masking Dataset(MTMD).The MTMD dataset experiment successfully demonstrated that this method could create a mask that completely occludes the target and that the target could be hidden in real time using this mask.We demonstrated the concealment performance of our proposed method by comparing it to a number of well-known and highly optimized baselines.
文摘为解决毫米波雷达在对多目标跟踪时目标近邻聚类失败导致的目标数目低估和跟踪精度下降问题,提出一种基于概率假设密度(probability hypothesis density,PHD)滤波器的量测集联合划分方法。利用带噪声密度空间聚类(density based spatial clustering of applications with noise,DBSCAN)算法对采集到的量测集进行初步划分。通过PHD滤波器的预测值判断初步划分的点云簇是否存在重叠簇。针对重叠簇,利用滤波器预测值改进高斯混合模型(Gaussian mixed model,GMM)聚类算法并进行子划分。在仿真和实际环境中进行算法测试,仿真结果表明,所提算法能正确划分并跟踪近邻的目标,相比其他算法具有更好的跟踪精度。实测结果进一步验证了该算法能够成功识别近邻目标数量并跟踪,具有一定的工程实践意义。