为提高苹果的产量和质量,防止病虫害对果实质量的影响,设计了一款基于机器视觉的苹果树病虫害智能识别系统。该系统采用交互式分割(GrabCut)算法对图像进行分割,然后使用高斯拉普拉斯算子和拉普拉斯高斯(Laplacian-of-Gaussian,LOG)算...为提高苹果的产量和质量,防止病虫害对果实质量的影响,设计了一款基于机器视觉的苹果树病虫害智能识别系统。该系统采用交互式分割(GrabCut)算法对图像进行分割,然后使用高斯拉普拉斯算子和拉普拉斯高斯(Laplacian-of-Gaussian,LOG)算法将苹果叶片中的病斑提取出来,最后将提取出的图像送入深度神经网络(deep neural networks,DNN)进行进一步的分析与处理,能够实时、方便地识别出苹果树叶病害中较为常见、发病率高的花叶病,锈病,灰斑病,斑点落叶病以及褐斑病。经测试,该系统对苹果树5种常见病虫害识别率精度高达91.17%。结果表明,该算法能够有效提升苹果树病虫害防治,优于基于卷积神经网络特征的区域方法(regions with CNN features,R-CNN)、YOLO(you only look once)等单一病虫害检测方法。展开更多
文摘为提高苹果的产量和质量,防止病虫害对果实质量的影响,设计了一款基于机器视觉的苹果树病虫害智能识别系统。该系统采用交互式分割(GrabCut)算法对图像进行分割,然后使用高斯拉普拉斯算子和拉普拉斯高斯(Laplacian-of-Gaussian,LOG)算法将苹果叶片中的病斑提取出来,最后将提取出的图像送入深度神经网络(deep neural networks,DNN)进行进一步的分析与处理,能够实时、方便地识别出苹果树叶病害中较为常见、发病率高的花叶病,锈病,灰斑病,斑点落叶病以及褐斑病。经测试,该系统对苹果树5种常见病虫害识别率精度高达91.17%。结果表明,该算法能够有效提升苹果树病虫害防治,优于基于卷积神经网络特征的区域方法(regions with CNN features,R-CNN)、YOLO(you only look once)等单一病虫害检测方法。