期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进DeepSort的行人多目标跟踪算法 被引量:1
1
作者 郑繁亭 邢关生 《现代电子技术》 2023年第5期40-46,共7页
针对现有的行人多目标跟踪算法在遮挡、人群密集和光线差等情况下表现不佳的问题,提出一种改进YOLOv4与改进DeepSort算法相结合的行人多目标跟踪算法。首先,为增强检测网络的特征提取能力,在YOLOv4中嵌入ECANet注意力模块,提高检测精度... 针对现有的行人多目标跟踪算法在遮挡、人群密集和光线差等情况下表现不佳的问题,提出一种改进YOLOv4与改进DeepSort算法相结合的行人多目标跟踪算法。首先,为增强检测网络的特征提取能力,在YOLOv4中嵌入ECANet注意力模块,提高检测精度;其次,在改进DeepSort的跟踪算法中,由卡尔曼滤波算法预测多个行人目标在图像中的轨迹之后,使用GhostNetV1替换DeepSort中的重识别网络来生成行人的外观特征,提高行人重识别网络的性能;进而,采用匈牙利算法对检测框和预测框进行最优匹配,对未匹配成功的检测框采用DIOU代替IOU(交并比)进行二次匹配,提高DeepSort网络的跟踪性能;最后,开展了新跟踪算法与原DeepSort算法的对比实验,结果表明新算法的误检、漏检现象变少,鲁棒性增强,跟踪性能得到提高,MOTA提升了18.8%,IDF1提升了18.2%,身份编号转换次数降低了84次。 展开更多
关键词 多目标跟踪 改进DeepSort 轨迹预测 外观特征生成 图像处理 对比实验
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部