The combustion characteristics of two kinds of unburned pulverized coal (UPC) made from bituminous coal and anthracite were investigated by thermogravimetric analysis under air. The reaction kinetics mechanisms betwee...The combustion characteristics of two kinds of unburned pulverized coal (UPC) made from bituminous coal and anthracite were investigated by thermogravimetric analysis under air. The reaction kinetics mechanisms between UPC and CO2 in an isothermal experiment in the temperature range 1000–1100°C were investigated. The combustion performance of unburned pulverized coal made from bituminous coal (BUPC) was better than that of unburned pulverized coal made from anthracite (AUPC). The combustion characteristic indexes (S) of BUPC and AUPC are 0.47 × 10^-6 and 0.34 × 10^-6 %2·min^-2·°C^-3, respectively, and the combustion reaction apparent activation energies are 91.94 and 102.63 kJ·mol^-1, respectively. The reaction mechanism of BUPC with CO2 is random nucleation and growth, and the apparent activation energy is 96.24 kJ·mol^-1. By contrast, the reaction mechanism of AUPC with CO2 follows the shrinkage spherical function model and the apparent activation energy is 133.55 kJ·mol^-1.展开更多
The demanganization reaction kinetics of carbon-saturated liquid iron with an eight-component slag consisting of CaO–SiO2–MgO–FeO–MnO–Al2O3–TiO2–CaF2 was investigated at 1553, 1623, and 1673 K in this study. Th...The demanganization reaction kinetics of carbon-saturated liquid iron with an eight-component slag consisting of CaO–SiO2–MgO–FeO–MnO–Al2O3–TiO2–CaF2 was investigated at 1553, 1623, and 1673 K in this study. The rate-controlling step(RCS) for the demanganization reaction with regard to the hot metal pretreatment conditions was studied via kinetics analysis based on the fundamental equation of heterogeneous reaction kinetics. From the temperature dependence of the mass transfer coefficient of a transition-metal oxide(MnO), the apparent activation energy of the demanganization reaction was estimated to be 189.46 kJ·mol^–1 in the current study, which indicated that the mass transfer of MnO in the molten slag controlled the overall rate of the demanganization reaction. The calculated apparent activation energy was slightly lower than the values reported in the literature for mass transfer in a slag phase. This difference was attributed to an increase in the "specific reaction interface"(SRI) value, either as a result of turbulence at the reaction interface or a decrease of the absolute amount of slag phase during sampling, and to the addition of calcium fluoride to the slag.展开更多
The thermal decomposition process of LiHC2O4·H2O from 30 to 600 ℃ was investigated by the thermogravimetric and differential scanning calorimetry (TG-DSC). The phases decomposited at different temperature were c...The thermal decomposition process of LiHC2O4·H2O from 30 to 600 ℃ was investigated by the thermogravimetric and differential scanning calorimetry (TG-DSC). The phases decomposited at different temperature were characterized by X-ray diffraction (XRD), which indicated the decompositions at 150, 170, and 420℃, relating to LiHC2O4, Li2C2O4, Li2C2O4, and Li2CO3, respectively. Reaction mechanisms in the whole sintering process were determined, and the model fitting kinetic approaches were applied to data for non-isothermal thermal decomposition of LiHC2O4?H2O; finally, the kinetic parameters of each reaction were also calculated herein.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos. 51874080, 51604069, and 51774071)the Fundamental Research Funds for the Central Universities, China (No. N162504004)
文摘The combustion characteristics of two kinds of unburned pulverized coal (UPC) made from bituminous coal and anthracite were investigated by thermogravimetric analysis under air. The reaction kinetics mechanisms between UPC and CO2 in an isothermal experiment in the temperature range 1000–1100°C were investigated. The combustion performance of unburned pulverized coal made from bituminous coal (BUPC) was better than that of unburned pulverized coal made from anthracite (AUPC). The combustion characteristic indexes (S) of BUPC and AUPC are 0.47 × 10^-6 and 0.34 × 10^-6 %2·min^-2·°C^-3, respectively, and the combustion reaction apparent activation energies are 91.94 and 102.63 kJ·mol^-1, respectively. The reaction mechanism of BUPC with CO2 is random nucleation and growth, and the apparent activation energy is 96.24 kJ·mol^-1. By contrast, the reaction mechanism of AUPC with CO2 follows the shrinkage spherical function model and the apparent activation energy is 133.55 kJ·mol^-1.
基金support from the National Natural Science Foundation of China (Nos. U1560203 and 51274031)the Beijing Key Laboratory of Special Melting and Preparation of High-End Metal Materials in the School of Metallurgical and Ecological Engineering of University of Science and Technology Beijing, China
文摘The demanganization reaction kinetics of carbon-saturated liquid iron with an eight-component slag consisting of CaO–SiO2–MgO–FeO–MnO–Al2O3–TiO2–CaF2 was investigated at 1553, 1623, and 1673 K in this study. The rate-controlling step(RCS) for the demanganization reaction with regard to the hot metal pretreatment conditions was studied via kinetics analysis based on the fundamental equation of heterogeneous reaction kinetics. From the temperature dependence of the mass transfer coefficient of a transition-metal oxide(MnO), the apparent activation energy of the demanganization reaction was estimated to be 189.46 kJ·mol^–1 in the current study, which indicated that the mass transfer of MnO in the molten slag controlled the overall rate of the demanganization reaction. The calculated apparent activation energy was slightly lower than the values reported in the literature for mass transfer in a slag phase. This difference was attributed to an increase in the "specific reaction interface"(SRI) value, either as a result of turbulence at the reaction interface or a decrease of the absolute amount of slag phase during sampling, and to the addition of calcium fluoride to the slag.
基金financially supported by the National"863"Program of China(No.2009AA03Z226)Project on the Integration of Industry,Education and Research of Guangdong Province(No.2011A090200012)the Fundamental Research Funds for the Central Universities(No.FRF-MP-12-005B)
文摘The thermal decomposition process of LiHC2O4·H2O from 30 to 600 ℃ was investigated by the thermogravimetric and differential scanning calorimetry (TG-DSC). The phases decomposited at different temperature were characterized by X-ray diffraction (XRD), which indicated the decompositions at 150, 170, and 420℃, relating to LiHC2O4, Li2C2O4, Li2C2O4, and Li2CO3, respectively. Reaction mechanisms in the whole sintering process were determined, and the model fitting kinetic approaches were applied to data for non-isothermal thermal decomposition of LiHC2O4?H2O; finally, the kinetic parameters of each reaction were also calculated herein.