期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
线性有限元误差的L^2范数估计及其应用 被引量:2
1
作者 王刘彭 易年余 《湘潭大学自然科学学报》 CAS 2018年第1期19-23,共5页
基于分片L^2投影的稳定性估计,证明了线性有限元误差和投影误差的等价性.进一步利用分片线性插值的误差展开式,得到了有限元L^2误差的一个误差估计子.结合提出的Hessian重构技术,构造了有限元L^2误差的一个后验误差估计子.数值算例说明... 基于分片L^2投影的稳定性估计,证明了线性有限元误差和投影误差的等价性.进一步利用分片线性插值的误差展开式,得到了有限元L^2误差的一个误差估计子.结合提出的Hessian重构技术,构造了有限元L^2误差的一个后验误差估计子.数值算例说明了后验误差估计子的可靠性和有效性及相应自适应算法的数值表现. 展开更多
关键词 线性元 L^2投影 后验误差估计 自适应有限元方法
下载PDF
AN ADAPTIVE VERSION OF GLIMM'S SCHEME
2
作者 H.Kim M.Laforest D.Yoon 《Acta Mathematica Scientia》 SCIE CSCD 2010年第2期428-446,共19页
This article describes a local error estimator for Glimm's scheme for hyperbolic systems of conservation laws and uses it to replace the usual random choice in Glimm's scheme by an optimal choice. As a by-product of... This article describes a local error estimator for Glimm's scheme for hyperbolic systems of conservation laws and uses it to replace the usual random choice in Glimm's scheme by an optimal choice. As a by-product of the local error estimator, the procedure provides a global error estimator that is shown numerically to be a very accurate estimate of the error in L1 (R) for all times. Although there is partial mathematical evidence for the error estimator proposed, at this stage the error estimator must be considered ad- hoc. Nonetheless, the error estimator is simple to compute, relatively inexpensive, without adjustable parameters and at least as accurate as other existing error estimators. Numerical experiments in 1-D for Burgers' equation and for Euler's system are performed to measure the asymptotic accuracy of the resulting scheme and of the error estimator. 展开更多
关键词 conservation laws finite difference methods ADAPTIVE error estimation aposteriori
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部