The electrodeposition of zinc nickle alloy was obtained on a copper cathode of 1×1cm 2. The deposited alloys are quantitatively analyzed by atomic absorption spectrometry. The morphology of the deposits was obs...The electrodeposition of zinc nickle alloy was obtained on a copper cathode of 1×1cm 2. The deposited alloys are quantitatively analyzed by atomic absorption spectrometry. The morphology of the deposits was observed by means of scanning electron microscopy(SEM).We observed that the electrodeposition of zinc nickle alloy is an anomalous codeposition. The catalytic effects of SCN - on the electrochemical behavior of Ni deposition and hydrogen discharge are obvious. SEM analysis shows that the surface morphology of the coating appears to be more compact and homogeneous with the increase of SCN - concentration.展开更多
基金theStateKeyLab .forPhys .Chem .ofSolidSur face XiamenUniversity
文摘The electrodeposition of zinc nickle alloy was obtained on a copper cathode of 1×1cm 2. The deposited alloys are quantitatively analyzed by atomic absorption spectrometry. The morphology of the deposits was observed by means of scanning electron microscopy(SEM).We observed that the electrodeposition of zinc nickle alloy is an anomalous codeposition. The catalytic effects of SCN - on the electrochemical behavior of Ni deposition and hydrogen discharge are obvious. SEM analysis shows that the surface morphology of the coating appears to be more compact and homogeneous with the increase of SCN - concentration.
文摘目前国内对碱性锌酸盐体系电镀锌钴合金的研究较少。研究了碱性锌酸盐Zn-Co合金电镀体系中合金镀液组成及工艺条件对镀层Co含量的影响,得到了最佳镀液组成及工艺条件:锌钴离子总浓度0.3 mol/L,锌钴离子摩尔比9∶1,150 g/L氢氧化钠,15.0 m L/L添加剂A,1.0 m L/L添加剂B,电流密度Jc3 A/dm2,温度25~30℃。在最佳工艺条件下可得到Co含量为2.0%~2.2%的Zn-Co合金镀层。结果表明:Zn-Co金的沉积表现为异常共沉积;在一定范围内,镀层中钴含量的变化会影响镀层光亮度的变化;钴配位剂对Zn-Co合金的共沉积电化学行为不造成影响。