Commercial lithium-ion(Li-ion)batteries based on graphite anodes are meeting their bottlenecks that are limited energy densities.In order to satisfy the large market demands of smaller and lighter rechargeable batteri...Commercial lithium-ion(Li-ion)batteries based on graphite anodes are meeting their bottlenecks that are limited energy densities.In order to satisfy the large market demands of smaller and lighter rechargeable batteries,high-capacity metallic Li replacing low-specific-capacity graphite enables the higher energy density in next-generation rechargeable Li metal batteries(LMBs).However,Li metal anode has been suffering from dendritic problems,interfacial side reactions,volume change and low Coulombic efficiency.Therefore,performance enhancements of Li metal anodes are rather important to realize the high energy density characteristic of metallic Li.In this review,the annoying Li dendrite growth,unstable reaction interface and practical application issues of Li metal anodes are summarized and detailedly discussed to understand the current challenges concerning Li metal anodes.For overcoming such remaining challenges,the corresponding strategies and recent advances are covered and categorized.Finally,we discuss future opportunities and perspectives for developing high-performance Li metal anodes.展开更多
Given their low cost and intrinsic safety,aqueous Zn metal batteries(AZMBs)are drawing increasing attention in the field of smart grids and large-scale energy storage.However,the Zn metal anode in aqueous electrolyte ...Given their low cost and intrinsic safety,aqueous Zn metal batteries(AZMBs)are drawing increasing attention in the field of smart grids and large-scale energy storage.However,the Zn metal anode in aqueous electrolyte suffers from a critical issue,corrosion,which must be fully addressed before the practical implementation of AZMBs.In this perspective,the mechanisms of aqueous Zn metal anode corrosion in both alkaline and neutral electrolytes are compared and discussed.The methods for studying the corrosion processes and the strategies for Zn corrosion protection in AZMBs are also summarized.Finally,some expectations about potential research directions for making corrosion-resistant AZMBs a commercial reality are provided.展开更多
Rechargeable aqueous Zn-ion batteries(AZIBs)are one of the most promising energy storage devices for large-scale energy storage owing to their high specific capacity,eco-friendliness,low cost and high safety.Neverthel...Rechargeable aqueous Zn-ion batteries(AZIBs)are one of the most promising energy storage devices for large-scale energy storage owing to their high specific capacity,eco-friendliness,low cost and high safety.Nevertheless,zinc metal anodes suffer from severe dendrite growth and side reactions,resulting in the inferior electrochemical performance of AZIBs.To address these problems,surface modification of zinc metal anodes is a facile and effective method to regulate the interaction between the zinc anode and an electrolyte.In this review,the current challenges and strategies for zinc metal anodes are presented.Furthermore,recent advances in surface modification strategies to improve their electrochemical performance are concluded and discussed.Finally,challenges and prospects for future development of zinc metal anodes are proposed.We hope this review will be useful for designing and fabricating highperformance AZIBs and boosting their practical applications.展开更多
Zn-based batteries have attracted extensive attention due to their high theoretical energy density,safety,abundant resources,environmental friendliness,and low cost.They are a new energy storage and conversion technol...Zn-based batteries have attracted extensive attention due to their high theoretical energy density,safety,abundant resources,environmental friendliness,and low cost.They are a new energy storage and conversion technology with significant development potential and have been widely used in renewable energy and portable electronic devices.Considerable attempts have been devoted to improving the performance of Zn-based batteries.Specifically,battery cycle life and energy efficiency can be improved by electrolyte modification and the construction of highly efficient rechargeable Zn anodes.This review compiles the progress of the research related to Zn anodes and electrolytes,especially in the last five years.This review will introduce fundamental concepts,summarize recent development,and inspire further systematic research for high-performance Zn-based batteries in the future.展开更多
Metallic zinc(Zn)is one of the most attractive multivalent-metal anode materials in post-lithium batteries because of its high abundance,low cost and high theoretical capacity.However,it usually suffers from large vol...Metallic zinc(Zn)is one of the most attractive multivalent-metal anode materials in post-lithium batteries because of its high abundance,low cost and high theoretical capacity.However,it usually suffers from large voltage polarization,low Coulombic efficiency and high propensity for dendritic failure during Zn stripping/plating,hindering the practical application in aqueous rechargeable zinc-metal batteries(AR-ZMBs).Here we demonstrate that anionic surfactant-assisted in situ surface alloying of Cu and Zn remarkably improves Zn reversibility of 3D nanoporous Zn electrodes for potential use as high-performance AR-ZMB anode materials.As a result of the zincophilic ZnxCuy alloy shell guiding uniform Zn deposition with a zero nucleation overpotential and facilitating Zn stripping via the ZnxCuy/Zn galvanic couples,the self-supported nanoporous ZnxCuy/Zn electrodes exhibit superior dendrite-free Zn stripping/plating behaviors in ambient aqueous electrolyte,with ultralow polarizations under current densities up to 50 mA cm^(‒2),exceptional stability for 1900 h and high Zn utilization.This enables AR-ZMB full cells constructed with nanoporous ZnxCuy/Zn anode and K_(z)MnO_(2)cathode to achieve specific energy of as high as~430 Wh kg^(‒1)with~99.8%Coulombic efficiency,and retain~86%after long-term cycles for>700 h.展开更多
Lithium metal, the ideal anode material for next-generation high-energy batteries, suffers from the severe safety problem of Li dendrites. Herein, we report a simple approach to effectively maintain the morphology of ...Lithium metal, the ideal anode material for next-generation high-energy batteries, suffers from the severe safety problem of Li dendrites. Herein, we report a simple approach to effectively maintain the morphology of Li-metal anode and enhance the cycling performance of Li batteries by surface coating of a porous polyvinylidene fluoride (PVDF) thin film. In symmetrical cells testing, the cells with the Li@PVDF electrode display stable cycling performance more than 1300 h (650 cycles) at the current density of 0.5 mA/cm^2 with a stripping/plating capacity of 0.5 mAh/cm^2. The results with full cells employing Li@PVDF anode and LiFePO_4 cathode show a good cycling ability with a capacity retention of 80.0% after 500 cycles at 4 C and an excellent rate capability with a high capacity of 78.4 mAh/g even at a high rate of 10 C.展开更多
The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contribut...The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contributed to explore novel anode materials with high electronic conductivity and rapid Li^(+)diffusion kinetics for achieving favorable low-temperature performance of LIBs.Herein,we try to review the recent reports on the synthesis and characterizations of low-temperature anode materials.First,we summarize the underlying mechanisms responsible for the performance degradation of anode materials at subzero temperatures.Second,detailed discussions concerning the key pathways(boosting electronic conductivity,enhancing Li^(+)diffusion kinetics,and inhibiting lithium dendrite)for improving the low-temperature performance of anode materials are presented.Third,several commonly used low-temperature anode materials are briefly introduced.Fourth,recent progress in the engineering of these low-temperature anode materials is summarized in terms of structural design,morphology control,surface&interface modifications,and multiphase materials.Finally,the challenges that remain to be solved in the field of low-temperature anode materials are discussed.This review was organized to offer valuable insights and guidance for next-generation LIBs with excellent low-temperature electrochemical performance.展开更多
The undesirable dendrite growth induced by non-planar zinc(Zn)deposition and low Coulombic efficiency resulting from severe side reactions have been long-standing challenges for metallic Zn anodes and substantially im...The undesirable dendrite growth induced by non-planar zinc(Zn)deposition and low Coulombic efficiency resulting from severe side reactions have been long-standing challenges for metallic Zn anodes and substantially impede the practical application of rechargeable aqueous Zn metal batteries(ZMBs).Herein,we present a strategy for achieving a high-rate and long-cycle-life Zn metal anode by patterning Zn foil surfaces and endowing a Zn-Indium(Zn-In)interface in the microchannels.The accumulation of electrons in the microchannel and the zincophilicity of the Zn-In interface promote preferential heteroepitaxial Zn deposition in the microchannel region and enhance the tolerance of the electrode at high current densities.Meanwhile,electron aggregation accelerates the dissolution of non-(002)plane Zn atoms on the array surface,thereby directing the subsequent homoepitaxial Zn deposition on the array surface.Consequently,the planar dendrite-free Zn deposition and long-term cycling stability are achieved(5,050 h at 10.0 mA cm^(−2) and 27,000 cycles at 20.0 mA cm^(−2)).Furthermore,a Zn/I_(2) full cell assembled by pairing with such an anode can maintain good stability for 3,500 cycles at 5.0 C,demonstrating the application potential of the as-prepared ZnIn anode for high-performance aqueous ZMBs.展开更多
Rechargeable aqueous zinc-ion batteries(ZIBs)have gained attention as promising candidates for nextgeneration large-scale energy storage systems due to their advantages of improved safety,environmental sustainability,...Rechargeable aqueous zinc-ion batteries(ZIBs)have gained attention as promising candidates for nextgeneration large-scale energy storage systems due to their advantages of improved safety,environmental sustainability,and low cost.However,the zinc metal anode in aqueous ZIBs faces critical challenges,including dendrite growth,hydrogen evolution reactions,and corrosion,which severely compromise Coulombic efficiency and cycling stability,hindering their broader adoption.This review first explores the fundamental mechanisms underlying these challenges and then examines current strategies to address them,focusing on structural design,surface modifications,electrolyte optimization,and alloying treatments.Finally,potential future directions are discussed,outlining a pathway toward achieving high-performance aqueous ZIBs.展开更多
基金financially supported by the Innovation-Driven Project of Central South University(No.2019CX033)the National Natural Science Foundation of China(No:51904344)+2 种基金the Natural Science Foundation of Guangdong Province(2019A1515012111)the Science&Technology Innovation Commission of Shenzhen(Grant No.20180123)the Shenzhen Science and Technology Program(KQTD20180412181422399)。
文摘Commercial lithium-ion(Li-ion)batteries based on graphite anodes are meeting their bottlenecks that are limited energy densities.In order to satisfy the large market demands of smaller and lighter rechargeable batteries,high-capacity metallic Li replacing low-specific-capacity graphite enables the higher energy density in next-generation rechargeable Li metal batteries(LMBs).However,Li metal anode has been suffering from dendritic problems,interfacial side reactions,volume change and low Coulombic efficiency.Therefore,performance enhancements of Li metal anodes are rather important to realize the high energy density characteristic of metallic Li.In this review,the annoying Li dendrite growth,unstable reaction interface and practical application issues of Li metal anodes are summarized and detailedly discussed to understand the current challenges concerning Li metal anodes.For overcoming such remaining challenges,the corresponding strategies and recent advances are covered and categorized.Finally,we discuss future opportunities and perspectives for developing high-performance Li metal anodes.
基金Z.Cai acknowledges the financial support from the National Natural Science Foundation of China(No.22205068)The project was supported by the"CUG Scholar"Scientific Research Funds at China University of Geosciences(Wuhan)(Project No.2022118).
文摘Given their low cost and intrinsic safety,aqueous Zn metal batteries(AZMBs)are drawing increasing attention in the field of smart grids and large-scale energy storage.However,the Zn metal anode in aqueous electrolyte suffers from a critical issue,corrosion,which must be fully addressed before the practical implementation of AZMBs.In this perspective,the mechanisms of aqueous Zn metal anode corrosion in both alkaline and neutral electrolytes are compared and discussed.The methods for studying the corrosion processes and the strategies for Zn corrosion protection in AZMBs are also summarized.Finally,some expectations about potential research directions for making corrosion-resistant AZMBs a commercial reality are provided.
基金supported by the National Key Research and Development Program of China(2020YFB1713500)the Chinese 02 Special Fund(2017ZX02408003)+2 种基金the Open Fund of National Joint Engineering Research Center for abrasion control and molding of metal materials(HKDNM201807)the Student Research Training Plan of Henan University of Science and Technology(2020026)the National Undergraduate Innovation and Entrepreneurship Training Program(202010464031,202110464005)。
文摘Rechargeable aqueous Zn-ion batteries(AZIBs)are one of the most promising energy storage devices for large-scale energy storage owing to their high specific capacity,eco-friendliness,low cost and high safety.Nevertheless,zinc metal anodes suffer from severe dendrite growth and side reactions,resulting in the inferior electrochemical performance of AZIBs.To address these problems,surface modification of zinc metal anodes is a facile and effective method to regulate the interaction between the zinc anode and an electrolyte.In this review,the current challenges and strategies for zinc metal anodes are presented.Furthermore,recent advances in surface modification strategies to improve their electrochemical performance are concluded and discussed.Finally,challenges and prospects for future development of zinc metal anodes are proposed.We hope this review will be useful for designing and fabricating highperformance AZIBs and boosting their practical applications.
基金This work was financially supported by the National Natural Science Foundation of China(No.51925202 and 51972008).
文摘Zn-based batteries have attracted extensive attention due to their high theoretical energy density,safety,abundant resources,environmental friendliness,and low cost.They are a new energy storage and conversion technology with significant development potential and have been widely used in renewable energy and portable electronic devices.Considerable attempts have been devoted to improving the performance of Zn-based batteries.Specifically,battery cycle life and energy efficiency can be improved by electrolyte modification and the construction of highly efficient rechargeable Zn anodes.This review compiles the progress of the research related to Zn anodes and electrolytes,especially in the last five years.This review will introduce fundamental concepts,summarize recent development,and inspire further systematic research for high-performance Zn-based batteries in the future.
基金supported by National Natural Science Foundation of China (No. 51871107, 52130101)Chang Jiang Scholar Program of China (Q2016064)+3 种基金the Program for JLU Science and Technology Innovative Research Team (JLUSTIRT, 2017TD-09)the Natural Science Foundation of Jilin Province (20200201019JC)the Fundamental Research Funds for the Central Universitiesthe Program for Innovative Research Team (in Science and Technology) in University of Jilin Province
文摘Metallic zinc(Zn)is one of the most attractive multivalent-metal anode materials in post-lithium batteries because of its high abundance,low cost and high theoretical capacity.However,it usually suffers from large voltage polarization,low Coulombic efficiency and high propensity for dendritic failure during Zn stripping/plating,hindering the practical application in aqueous rechargeable zinc-metal batteries(AR-ZMBs).Here we demonstrate that anionic surfactant-assisted in situ surface alloying of Cu and Zn remarkably improves Zn reversibility of 3D nanoporous Zn electrodes for potential use as high-performance AR-ZMB anode materials.As a result of the zincophilic ZnxCuy alloy shell guiding uniform Zn deposition with a zero nucleation overpotential and facilitating Zn stripping via the ZnxCuy/Zn galvanic couples,the self-supported nanoporous ZnxCuy/Zn electrodes exhibit superior dendrite-free Zn stripping/plating behaviors in ambient aqueous electrolyte,with ultralow polarizations under current densities up to 50 mA cm^(‒2),exceptional stability for 1900 h and high Zn utilization.This enables AR-ZMB full cells constructed with nanoporous ZnxCuy/Zn anode and K_(z)MnO_(2)cathode to achieve specific energy of as high as~430 Wh kg^(‒1)with~99.8%Coulombic efficiency,and retain~86%after long-term cycles for>700 h.
基金supported by the National Natural Science Foundation of China(Nos. 21621091, 21273184)the National Key Research and Development Program of China(No. 2016YFB0100202)
文摘Lithium metal, the ideal anode material for next-generation high-energy batteries, suffers from the severe safety problem of Li dendrites. Herein, we report a simple approach to effectively maintain the morphology of Li-metal anode and enhance the cycling performance of Li batteries by surface coating of a porous polyvinylidene fluoride (PVDF) thin film. In symmetrical cells testing, the cells with the Li@PVDF electrode display stable cycling performance more than 1300 h (650 cycles) at the current density of 0.5 mA/cm^2 with a stripping/plating capacity of 0.5 mAh/cm^2. The results with full cells employing Li@PVDF anode and LiFePO_4 cathode show a good cycling ability with a capacity retention of 80.0% after 500 cycles at 4 C and an excellent rate capability with a high capacity of 78.4 mAh/g even at a high rate of 10 C.
基金supported by the National Key Research and Development Program of China(No.2019YFA0705601)the National Natural Science Foundation of China(No.U23A20122,52101267)the Key Science and Technology Special Project of Henan Province(No.201111311400).
文摘The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contributed to explore novel anode materials with high electronic conductivity and rapid Li^(+)diffusion kinetics for achieving favorable low-temperature performance of LIBs.Herein,we try to review the recent reports on the synthesis and characterizations of low-temperature anode materials.First,we summarize the underlying mechanisms responsible for the performance degradation of anode materials at subzero temperatures.Second,detailed discussions concerning the key pathways(boosting electronic conductivity,enhancing Li^(+)diffusion kinetics,and inhibiting lithium dendrite)for improving the low-temperature performance of anode materials are presented.Third,several commonly used low-temperature anode materials are briefly introduced.Fourth,recent progress in the engineering of these low-temperature anode materials is summarized in terms of structural design,morphology control,surface&interface modifications,and multiphase materials.Finally,the challenges that remain to be solved in the field of low-temperature anode materials are discussed.This review was organized to offer valuable insights and guidance for next-generation LIBs with excellent low-temperature electrochemical performance.
基金supported by the National Research Foundation of Korea Grant funded by the Korean government(MSIP)(No.2018R1A6A1A03025708).
文摘The undesirable dendrite growth induced by non-planar zinc(Zn)deposition and low Coulombic efficiency resulting from severe side reactions have been long-standing challenges for metallic Zn anodes and substantially impede the practical application of rechargeable aqueous Zn metal batteries(ZMBs).Herein,we present a strategy for achieving a high-rate and long-cycle-life Zn metal anode by patterning Zn foil surfaces and endowing a Zn-Indium(Zn-In)interface in the microchannels.The accumulation of electrons in the microchannel and the zincophilicity of the Zn-In interface promote preferential heteroepitaxial Zn deposition in the microchannel region and enhance the tolerance of the electrode at high current densities.Meanwhile,electron aggregation accelerates the dissolution of non-(002)plane Zn atoms on the array surface,thereby directing the subsequent homoepitaxial Zn deposition on the array surface.Consequently,the planar dendrite-free Zn deposition and long-term cycling stability are achieved(5,050 h at 10.0 mA cm^(−2) and 27,000 cycles at 20.0 mA cm^(−2)).Furthermore,a Zn/I_(2) full cell assembled by pairing with such an anode can maintain good stability for 3,500 cycles at 5.0 C,demonstrating the application potential of the as-prepared ZnIn anode for high-performance aqueous ZMBs.
基金National Natural Science Foundation of China(Grant No.22275114)Science and Technology Planning Project of Shenzhen Municipality(Grant No.WDZC20220817160017003)+2 种基金Cross-Disciplinary Research Fund of Tsinghua Shenzhen International Graduate School(SIGS),Tsinghua University(Grant No.JC2022003)Overseas Research Cooperation Fund Research Plan of Tsinghua SIGS(Grant No.HW2023006)Scientific Research Startup Fund of SIGS,Tsinghua University(Grant Nos.QD2021027C and QD2023001C).
文摘Rechargeable aqueous zinc-ion batteries(ZIBs)have gained attention as promising candidates for nextgeneration large-scale energy storage systems due to their advantages of improved safety,environmental sustainability,and low cost.However,the zinc metal anode in aqueous ZIBs faces critical challenges,including dendrite growth,hydrogen evolution reactions,and corrosion,which severely compromise Coulombic efficiency and cycling stability,hindering their broader adoption.This review first explores the fundamental mechanisms underlying these challenges and then examines current strategies to address them,focusing on structural design,surface modifications,electrolyte optimization,and alloying treatments.Finally,potential future directions are discussed,outlining a pathway toward achieving high-performance aqueous ZIBs.