Building well-developed ion-conductive highways is highly desirable for anion exchange membranes(AEMs).Grafting side chain is a highly effective approach for constructing a well-defined phaseseparated morphological st...Building well-developed ion-conductive highways is highly desirable for anion exchange membranes(AEMs).Grafting side chain is a highly effective approach for constructing a well-defined phaseseparated morphological structure and forming unblocked ion pathways in AEMs for fast ion transport.Fluorination of side chains can further enhance phase separation due to the superhydrophobic nature of fluorine groups.However,their electronic effect on the alkaline stability of side chains and membranes is rarely reported.Here,fluorine-containing and fluorine-free side chains are introduced into the polyaromatic backbone in proper configuration to investigate the impact of the fluorine terminal group on the stability of the side chains and membrane properties.The poly(binaphthyl-co-p-terphenyl piperidinium)AEM(QBNp TP)has the highest molecular weight and most dimensional stability due to its favorable backbone arrangement among ortho-and meta-terphenyl based AEMs.Importantly,by introducing both a fluorinated piperidinium side chain and a hexane chain into the p-terphenyl-based backbone,the prepared AEM(QBNp TP-QFC)presents an enhanced conductivity(150.6 m S cm^(-1))and a constrained swelling at 80℃.The electronic effect of fluorinated side chains is contemplated by experiments and simulations.The results demonstrate that the presence of strong electro-withdrawing fluorine groups weakens the electronic cloud of adjacent C atoms,increasing OH^(-)attack on the C atom and improving the stability of piperidinium cations.Hence QBNp TP-QFC possesses a robust alkaline stability at 80℃(95.3%conductivity retention after testing in 2 M Na OH for 2160 h).An excellent peak power density of 1.44 W cm^(-2)and a remarkable durability at 80℃(4.5%voltage loss after 100 h)can be observed.展开更多
In order to effectively improve the properties of anion exchange membrane(AEM)materials,a series of novel poly(aryl ether nitrile)s with flexible side-chain-type quaternary phosphonium cations(PAEN-TPP-x)were designed...In order to effectively improve the properties of anion exchange membrane(AEM)materials,a series of novel poly(aryl ether nitrile)s with flexible side-chain-type quaternary phosphonium cations(PAEN-TPP-x)were designed and prepared on the basis of considering the influences of polymer backbone,cationic group species and the connection way between the cations and polymer chains.The synthetic method,structure and ion-exchange capacity,water absorption,swelling,hydroxide conductivity and alkaline stability of the obtained AEMs were studied.A comparative study with other reported AEMs was also performed for further exploration of the relationship between the structure and properties.These AEMs with flexible side-chain-type quaternary phosphonium cations displayed good comprehensive properties.Their water uptakes and swelling ratios were in the range of 11.6%–22.7%and 4.4%–7.8%at 60℃,respectively.They had hydroxide conductivity in the range of 28.6–45.8 mS cm^-1 at 60℃.Moreover,these AEMs also exhibited improved alkaline stability,and the hydroxide conductivity for PAEN-TPP-0.35 could remain 82.1%and 80.6%of its initial value at 60 and 90℃in 2 mol L^-1 NaOH solution for480 h,respectively.展开更多
The magnesium aluminum and zinc aluminum layered double hydroxides intercalated with NO3^- (MgAl-NO3-LDH and ZnAl-NO3-LDH) were prepared by the coprecipitation method, and the magnesium aluminum and the zinc aluminu...The magnesium aluminum and zinc aluminum layered double hydroxides intercalated with NO3^- (MgAl-NO3-LDH and ZnAl-NO3-LDH) were prepared by the coprecipitation method, and the magnesium aluminum and the zinc aluminum layered double hydroxides intercalated with VO; (MgAl-VOx-LDH and ZnAl-VOx-LDH) were prepared by the anion-exchange method. Morphologies, microstructures and chemical compositions of LDHs were investigated by SEM, EDS, XRD, FTIR, Raman and TG analyses. The immersion tests were carried to determine the corrosion inhibition properties of MgAl-VOx-LDH and ZnAl-VOx-LDH on AZ31 Mg alloys. The results showed that ZnAl-VOx-LDH possesses the best anion-exchange and inhibition abilities. The influence of treatment parameters on microstructures of LDHs were discussed. Additionally, an inhibition mechanism for ZnAl-VOx-LDH on the AZ31 magnesium alloy was proposed and discussed.展开更多
Metal–metal battery bears great potential for next-generation large-scale energy storage system because of its simple manufacture process and low production cost.However,the cross-over of metal cations from the catho...Metal–metal battery bears great potential for next-generation large-scale energy storage system because of its simple manufacture process and low production cost.However,the cross-over of metal cations from the cathode to the anode causes a loss in capacity and influences battery stability.Herein,a coating of poly(ionic liquid)(PIL)with poly(diallyldimethylammonium bis(trifluoromethanesulfonyl)imide)(PDADMA^(+)TFSI^(−))on a commercial polypropylene(PP)separator serves as an anion exchange membrane for a 3.3 V copper–lithium battery.The PIL has a positively charged polymer backbone that can block the migration of copper ions,thus improving Coulombic efficiency,long-term cycling stability and inhibiting self-discharge of the battery.It can also facilitate the conduction of anions through the membrane and reduce polarization,especially for fast charging/discharging.Bruce-Vincent method gives the transport number in the electrolyte to be 0.25 and 0.04 for PP separator without and with PIL coating,respectively.This suggests that the PIL layer reduces the contribution of the internal current due to cation transport.The use of PIL as a coating layer for commercial PP separator is a cost-effective way to improve overall electrochemical performance of copper–lithium batteries.Compared to PP and polyacrylic acid(PAA)/PP separators,the PIL/PP membrane raises the Coulombic efficiency to 99%and decreases the average discharge voltage drop to about 0.09 V when the current density is increased from 0.1 to 1 mA cm^(−2).展开更多
基金supported by the Knowledge Innovation Program of Wuhan-Basic Research (2022010801010321)Wuhan Limo Technology Limited Company (2022420111000256 and2023420111000277)。
文摘阴离子交换膜水电解槽的阴离子交换膜成本低、无需铂族贵金属催化剂,有望取代高成本的质子交换膜水电解槽.然而,阴离子交换膜的尺寸稳定性差以及在高温、高浓度碱液中的稳定性差,阻碍了阴离子交换膜水电解槽的发展.最近,我们合成了一种具有优异碱性稳定性的聚(三苯基-N-甲基奎宁基)阴离子交换膜,为了进一步提高这种阴离子交换膜的机械强度和尺寸稳定性,在本工作中,我们添加了三氟苯乙酮来制备聚(三苯基-三氟苯乙酮-N-甲基奎宁基)阴离子交换膜.这种共聚阴离子交换膜具有超高的碱性稳定性(在80℃,10 mol L^(-1)的NaOH溶液中浸泡1600小时后OH^(-)电导率和机械强度不发生衰减),优异的尺寸稳定性(30–80℃温度下,纯水中溶胀率不超过7%;10 mol L^(-1)的NaOH溶液中溶胀率不超过2%),高氢氧根电导率(80°C时达134.5 mS cm^(-1))和高机械强度(抗拉伸强度达43.2 MPa).这种阴离子交换膜和镍合金泡沫电极组装的简易水电解槽在80°C下,2.0 V和5 mol L^(-1)的KOH水电解质中具有1780 mA cm^(-2)的优异电流密度,并且具有高耐久性.
基金the financial support from the National Natural Science Foundation of China(22078272&22278340)。
文摘Building well-developed ion-conductive highways is highly desirable for anion exchange membranes(AEMs).Grafting side chain is a highly effective approach for constructing a well-defined phaseseparated morphological structure and forming unblocked ion pathways in AEMs for fast ion transport.Fluorination of side chains can further enhance phase separation due to the superhydrophobic nature of fluorine groups.However,their electronic effect on the alkaline stability of side chains and membranes is rarely reported.Here,fluorine-containing and fluorine-free side chains are introduced into the polyaromatic backbone in proper configuration to investigate the impact of the fluorine terminal group on the stability of the side chains and membrane properties.The poly(binaphthyl-co-p-terphenyl piperidinium)AEM(QBNp TP)has the highest molecular weight and most dimensional stability due to its favorable backbone arrangement among ortho-and meta-terphenyl based AEMs.Importantly,by introducing both a fluorinated piperidinium side chain and a hexane chain into the p-terphenyl-based backbone,the prepared AEM(QBNp TP-QFC)presents an enhanced conductivity(150.6 m S cm^(-1))and a constrained swelling at 80℃.The electronic effect of fluorinated side chains is contemplated by experiments and simulations.The results demonstrate that the presence of strong electro-withdrawing fluorine groups weakens the electronic cloud of adjacent C atoms,increasing OH^(-)attack on the C atom and improving the stability of piperidinium cations.Hence QBNp TP-QFC possesses a robust alkaline stability at 80℃(95.3%conductivity retention after testing in 2 M Na OH for 2160 h).An excellent peak power density of 1.44 W cm^(-2)and a remarkable durability at 80℃(4.5%voltage loss after 100 h)can be observed.
基金supported by the National Natural Science Foundation of China (21404016)the Key Research Program of Jiangsu Province (BE2017645)+1 种基金the Six Talent Peaks Project of Jiangsu Province (XCL-078)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions of China
文摘In order to effectively improve the properties of anion exchange membrane(AEM)materials,a series of novel poly(aryl ether nitrile)s with flexible side-chain-type quaternary phosphonium cations(PAEN-TPP-x)were designed and prepared on the basis of considering the influences of polymer backbone,cationic group species and the connection way between the cations and polymer chains.The synthetic method,structure and ion-exchange capacity,water absorption,swelling,hydroxide conductivity and alkaline stability of the obtained AEMs were studied.A comparative study with other reported AEMs was also performed for further exploration of the relationship between the structure and properties.These AEMs with flexible side-chain-type quaternary phosphonium cations displayed good comprehensive properties.Their water uptakes and swelling ratios were in the range of 11.6%–22.7%and 4.4%–7.8%at 60℃,respectively.They had hydroxide conductivity in the range of 28.6–45.8 mS cm^-1 at 60℃.Moreover,these AEMs also exhibited improved alkaline stability,and the hydroxide conductivity for PAEN-TPP-0.35 could remain 82.1%and 80.6%of its initial value at 60 and 90℃in 2 mol L^-1 NaOH solution for480 h,respectively.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 51601108, 51571134, 21676285), the Natural Science Foundation of Shandong Province (Grant No. 2016ZRB01A62), the SDUST Research Fund (No. 2014TDJH104), and the Ministry-Province jointly-constructed cultivation base for the State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi Zhuang Autonomous Region.
文摘The magnesium aluminum and zinc aluminum layered double hydroxides intercalated with NO3^- (MgAl-NO3-LDH and ZnAl-NO3-LDH) were prepared by the coprecipitation method, and the magnesium aluminum and the zinc aluminum layered double hydroxides intercalated with VO; (MgAl-VOx-LDH and ZnAl-VOx-LDH) were prepared by the anion-exchange method. Morphologies, microstructures and chemical compositions of LDHs were investigated by SEM, EDS, XRD, FTIR, Raman and TG analyses. The immersion tests were carried to determine the corrosion inhibition properties of MgAl-VOx-LDH and ZnAl-VOx-LDH on AZ31 Mg alloys. The results showed that ZnAl-VOx-LDH possesses the best anion-exchange and inhibition abilities. The influence of treatment parameters on microstructures of LDHs were discussed. Additionally, an inhibition mechanism for ZnAl-VOx-LDH on the AZ31 magnesium alloy was proposed and discussed.
基金supported by grant from the Research Grants Council(City U 11305220)of the Hong Kong Special Administrative Region,China
文摘Metal–metal battery bears great potential for next-generation large-scale energy storage system because of its simple manufacture process and low production cost.However,the cross-over of metal cations from the cathode to the anode causes a loss in capacity and influences battery stability.Herein,a coating of poly(ionic liquid)(PIL)with poly(diallyldimethylammonium bis(trifluoromethanesulfonyl)imide)(PDADMA^(+)TFSI^(−))on a commercial polypropylene(PP)separator serves as an anion exchange membrane for a 3.3 V copper–lithium battery.The PIL has a positively charged polymer backbone that can block the migration of copper ions,thus improving Coulombic efficiency,long-term cycling stability and inhibiting self-discharge of the battery.It can also facilitate the conduction of anions through the membrane and reduce polarization,especially for fast charging/discharging.Bruce-Vincent method gives the transport number in the electrolyte to be 0.25 and 0.04 for PP separator without and with PIL coating,respectively.This suggests that the PIL layer reduces the contribution of the internal current due to cation transport.The use of PIL as a coating layer for commercial PP separator is a cost-effective way to improve overall electrochemical performance of copper–lithium batteries.Compared to PP and polyacrylic acid(PAA)/PP separators,the PIL/PP membrane raises the Coulombic efficiency to 99%and decreases the average discharge voltage drop to about 0.09 V when the current density is increased from 0.1 to 1 mA cm^(−2).