Three-dimensional(3D) geometric models with different comer angles (90° and 120°) and with or without inner round fillets in the bottom die were designed. Some important process parameters were regarded ...Three-dimensional(3D) geometric models with different comer angles (90° and 120°) and with or without inner round fillets in the bottom die were designed. Some important process parameters were regarded as the calculation conditions used in DEFORMTM-3D software, such as stress--strain data of compression test for AZ31 magnesium, temperatures of die and billet, and friction coefficient. Influence of friction coefficient on deformation process was discussed. The results show that reasonable lubrication condition is important to plastic deformation. The change characteristics for distributions of effective stress and strain during an equal channel angular extrusion (ECAE) process with inner angle of 90° and without fillets at outer comer were described. Inhomogeneity index (C) was defined and deformation heterogeneity of ECAE was analyzed from the simulation and experiment results. The deformation homogeneity caused by fillets at outer comer increased compared with the die without fillets. The cumulated maximum strains decrease with increasing the fillets of outer comer in ECAE die and the inner comer angle. The analysis results show that better structures of ECAE die including appropriate outer comer fillet and the inner comer angle of 90° for the die can improve the strain and ensure plastic deformation homogenization to a certain extent. The required extrusion force drops with increasing the fillet made at outer comer in ECAE die. It is demonstrated that the prediction results are in good agreement with experiments and the theoretical calculation and the research conclusions in literatures.展开更多
It has been widely studied about the final residual stress and deformation in muhipass welding of thick weldments. But there is a lack of a clear understanding of the interrelationship of interpass stress and deformat...It has been widely studied about the final residual stress and deformation in muhipass welding of thick weldments. But there is a lack of a clear understanding of the interrelationship of interpass stress and deformation during multipass welding. In this study, a three dimension numerical model of a sixteen-pass double V-groove welded joint with 50 mm plate is developed to compute the stress field and deformation by using multiple CPU parallel processing technology. The following factors such as the non-linear of temperature, heat radiation, filling of material step by step and so on are considered. Distribution and evolution law of welding stress in the transverse and longitudinal section is analyzed in this paper, and the interpnss stresses are studied also. At the same time the evolution course of angular deformation amount is analyzed, and the experimental results show that the calculated resuhs accord with the measured results of angular deformation.展开更多
Rigid-viscoplastic3D finite element simulations(3D FEM)of the equal channel angular pressing(ECAP),thecombination of ECAP+extrusion with different extrusion ratios,and direct extrusion of pure aluminum were performed ...Rigid-viscoplastic3D finite element simulations(3D FEM)of the equal channel angular pressing(ECAP),thecombination of ECAP+extrusion with different extrusion ratios,and direct extrusion of pure aluminum were performed andanalyzed.The3D FEM simulations were carried out to investigate the load-displacement behavior,the plastic deformationcharacteristics and the effective plastic strain homogeneity of Al-1080deformed by different forming processes.The simulationresults were validated by microstructure observations,microhardness distribution maps and the correlation between the effectiveplastic strain and the microhardness values.The3D FEM simulations were performed successfully with a good agreement with theexperimental results.The load-displacement curves and the peak load values of the3D FEM simulations and the experimentalresults were close from each other.The microhardness distribution maps were in a good conformity with the effective plastic straincontours and verifying the3D FEM simulations results.The ECAP workpiece has a higher degree of deformation homogeneity thanthe other deformation processes.The microhardness values were calculated based on the average effective plastic strain.Thepredicted microhardness values fitted the experimental results well.The microstructure observations in the longitudinal andtransverse directions support the3D FEM effective plastic strain and microhardness distributions result in different formingprocesses.展开更多
Bridge deformation monitoring usually adopts contact sensors,and the implementation process is often limited by the environment and observation conditions,resulting in unsatisfactory monitoring accuracy and effect.Gro...Bridge deformation monitoring usually adopts contact sensors,and the implementation process is often limited by the environment and observation conditions,resulting in unsatisfactory monitoring accuracy and effect.Ground-Based Synthetic Aperture Radar(GBSAR)combined with corner reflectors was used to perform static load-loaded deformation destruction experiments on solid model bridges in a non-contact manner.The semi parametric spline filtering and its optimization method were used to obtain the monitoring results of the GBSAR radar’s line of sight deformation,and the relative position of the corner reflector and the millimeter level deformation signals under different loading conditions were successfully extracted.The deformation transformation model from the radar line of sight direction to the vertical vibration direction was deduced.The transformation results of deformation monitoring and the measurement data such as the dial indicator were compared and analyzed.The occurrence and development process of bridge deformation and failure were successfully monitored,and the deformation characteristics of the bridge from continuous loading to eccentric loading until bridge failure were obtained.The experimental results show that GBSAR combined with corner reflector can be used for deformation feature acquisition,damage identification and health monitoring of bridges and other structures,and can provide a useful reference for design,construction and safety evaluation.展开更多
As a new attempt, equal channel angular extrusion (ECAE) of nickel-titanium shape memory alloy (NiTi SMA) tube was investigated by means of process experiment, finite element method (FEM) and microscopy. NiTi SM...As a new attempt, equal channel angular extrusion (ECAE) of nickel-titanium shape memory alloy (NiTi SMA) tube was investigated by means of process experiment, finite element method (FEM) and microscopy. NiTi SMA tube with the steel core in it was inserted into the steel can during ECAE of NiTi SMA tube. Based on rigid-viscoplastic FEM, multiple coupled boundary conditions and multiple constitutive models were used for finite element simulation of ECAE of NiTi SMA tube, where the effective stress field, the effective strain field and the velocity field were obtained. Finite element simulation results are in good accordance with the experimental ones. Finite element simulation results reveal that the velocity field shows the minimum value in the corner of NiTi SMA tube, where severe shear deformation occurs. Microstructural observation results reveal that severe plastic deformation leads to a certain grain orientation as well as occurrence of substructures in the grain interior and dynamic recovery occurs during ECAE of NiTi SMA tube. ECAE of NiTi SMA tube provides a new approach to manufacturing ultrafine-grained NiTi SMA tube.展开更多
The microstructure and mechanical properties of fine grained uranium prepared by equal channel angular pressing(ECAP)and subsequent intermediate heat treatment were investigated systematically by the confocal laser sc...The microstructure and mechanical properties of fine grained uranium prepared by equal channel angular pressing(ECAP)and subsequent intermediate heat treatment were investigated systematically by the confocal laser scanning microscope(CLSM),electron backscatter diffraction(EBSD)and split Hopkinson pressure bar(SHPB).The results show that the initial coarse grained uranium was refined from about 1000 to 6.5μm prepared by ECAP at 3 passes and subsequent heat treatment,and the corresponding dynamic yield strength increased from 135 to 390 MPa.For the ECAPed uranium samples,the relationship between grain size and yield strength could be described by classical Hall−Petch relationship,and the fitting Hall−Petch relationship for the fine grained uranium samples prepared by ECAP was drawn.展开更多
As-extruded Mg-6Zn(wt.%)Alloy was subjected to severe plastic deformation(SPD)by the equal-channel angular pressing(ECAP)at 160 ℃.The results of tensile tests at room temperature showed that two passes ECAP resulted ...As-extruded Mg-6Zn(wt.%)Alloy was subjected to severe plastic deformation(SPD)by the equal-channel angular pressing(ECAP)at 160 ℃.The results of tensile tests at room temperature showed that two passes ECAP resulted in a remarkable improvement of strength,yield strength from 200 to 265 MPa and ultimate tensile strength from 260 to 340 MPa.However,with the deformation increasing,the samples processed by ECAP for four or six passes had insignificant difference than that processed by two-pass ECAP.Massive precipitates were observed in all the Mg-6Zn alloys specimens processed by ECAP.Transmission electron microscope and X-ray diffraction results indicated that ECAP treatment induced the precipitation of laves MgZn_(2) phase and transition Mg_(4)Zn_(7) phase.The spherical MgZn_(2) particles and irregular shape Mg_(4)Zn_(7) particles coexist in the microstructure of Mg-6Zn alloy after six pass ECAP.展开更多
基金Project(2007CB613700)supported by National Basic Research Program of ChinaProject(2006BAE04B03)supported by Item of Support Plan during the 11th National Five-Year PlanProjects(CST,2007bb4413)supported by National Science Foundation of Chongqing,China
文摘Three-dimensional(3D) geometric models with different comer angles (90° and 120°) and with or without inner round fillets in the bottom die were designed. Some important process parameters were regarded as the calculation conditions used in DEFORMTM-3D software, such as stress--strain data of compression test for AZ31 magnesium, temperatures of die and billet, and friction coefficient. Influence of friction coefficient on deformation process was discussed. The results show that reasonable lubrication condition is important to plastic deformation. The change characteristics for distributions of effective stress and strain during an equal channel angular extrusion (ECAE) process with inner angle of 90° and without fillets at outer comer were described. Inhomogeneity index (C) was defined and deformation heterogeneity of ECAE was analyzed from the simulation and experiment results. The deformation homogeneity caused by fillets at outer comer increased compared with the die without fillets. The cumulated maximum strains decrease with increasing the fillets of outer comer in ECAE die and the inner comer angle. The analysis results show that better structures of ECAE die including appropriate outer comer fillet and the inner comer angle of 90° for the die can improve the strain and ensure plastic deformation homogenization to a certain extent. The required extrusion force drops with increasing the fillet made at outer comer in ECAE die. It is demonstrated that the prediction results are in good agreement with experiments and the theoretical calculation and the research conclusions in literatures.
基金National Natural Science Foundation of China (No. 50775053, 50675046)
文摘It has been widely studied about the final residual stress and deformation in muhipass welding of thick weldments. But there is a lack of a clear understanding of the interrelationship of interpass stress and deformation during multipass welding. In this study, a three dimension numerical model of a sixteen-pass double V-groove welded joint with 50 mm plate is developed to compute the stress field and deformation by using multiple CPU parallel processing technology. The following factors such as the non-linear of temperature, heat radiation, filling of material step by step and so on are considered. Distribution and evolution law of welding stress in the transverse and longitudinal section is analyzed in this paper, and the interpnss stresses are studied also. At the same time the evolution course of angular deformation amount is analyzed, and the experimental results show that the calculated resuhs accord with the measured results of angular deformation.
文摘Rigid-viscoplastic3D finite element simulations(3D FEM)of the equal channel angular pressing(ECAP),thecombination of ECAP+extrusion with different extrusion ratios,and direct extrusion of pure aluminum were performed andanalyzed.The3D FEM simulations were carried out to investigate the load-displacement behavior,the plastic deformationcharacteristics and the effective plastic strain homogeneity of Al-1080deformed by different forming processes.The simulationresults were validated by microstructure observations,microhardness distribution maps and the correlation between the effectiveplastic strain and the microhardness values.The3D FEM simulations were performed successfully with a good agreement with theexperimental results.The load-displacement curves and the peak load values of the3D FEM simulations and the experimentalresults were close from each other.The microhardness distribution maps were in a good conformity with the effective plastic straincontours and verifying the3D FEM simulations results.The ECAP workpiece has a higher degree of deformation homogeneity thanthe other deformation processes.The microhardness values were calculated based on the average effective plastic strain.Thepredicted microhardness values fitted the experimental results well.The microstructure observations in the longitudinal andtransverse directions support the3D FEM effective plastic strain and microhardness distributions result in different formingprocesses.
基金Science and Technology Innovation Program of Hunan Province(No.2021RC4037)National Natural Science Foundation of China:Deformation Monitoring Key Technology and Damage Mechanism Research on Data Fusion among GB-SAR and Multi-sensors(No.41877283)Scientific Research Project of Hunan Provincial Department of Natural Resources(No.2021-18)
文摘Bridge deformation monitoring usually adopts contact sensors,and the implementation process is often limited by the environment and observation conditions,resulting in unsatisfactory monitoring accuracy and effect.Ground-Based Synthetic Aperture Radar(GBSAR)combined with corner reflectors was used to perform static load-loaded deformation destruction experiments on solid model bridges in a non-contact manner.The semi parametric spline filtering and its optimization method were used to obtain the monitoring results of the GBSAR radar’s line of sight deformation,and the relative position of the corner reflector and the millimeter level deformation signals under different loading conditions were successfully extracted.The deformation transformation model from the radar line of sight direction to the vertical vibration direction was deduced.The transformation results of deformation monitoring and the measurement data such as the dial indicator were compared and analyzed.The occurrence and development process of bridge deformation and failure were successfully monitored,and the deformation characteristics of the bridge from continuous loading to eccentric loading until bridge failure were obtained.The experimental results show that GBSAR combined with corner reflector can be used for deformation feature acquisition,damage identification and health monitoring of bridges and other structures,and can provide a useful reference for design,construction and safety evaluation.
基金Project(51071056)supported by the National Natural Science Foundation of ChinaProjects(HEUCF121712,HEUCF201317002)supported by the Fundamental Research Funds for the Central Universities of China
文摘As a new attempt, equal channel angular extrusion (ECAE) of nickel-titanium shape memory alloy (NiTi SMA) tube was investigated by means of process experiment, finite element method (FEM) and microscopy. NiTi SMA tube with the steel core in it was inserted into the steel can during ECAE of NiTi SMA tube. Based on rigid-viscoplastic FEM, multiple coupled boundary conditions and multiple constitutive models were used for finite element simulation of ECAE of NiTi SMA tube, where the effective stress field, the effective strain field and the velocity field were obtained. Finite element simulation results are in good accordance with the experimental ones. Finite element simulation results reveal that the velocity field shows the minimum value in the corner of NiTi SMA tube, where severe shear deformation occurs. Microstructural observation results reveal that severe plastic deformation leads to a certain grain orientation as well as occurrence of substructures in the grain interior and dynamic recovery occurs during ECAE of NiTi SMA tube. ECAE of NiTi SMA tube provides a new approach to manufacturing ultrafine-grained NiTi SMA tube.
基金Project(51401187)supported by the National Natural Science Foundation of ChinaProjects(2014B0301046,2015B0301066)supported by the Science Development Fund of China Academy of Engineering Physics。
文摘The microstructure and mechanical properties of fine grained uranium prepared by equal channel angular pressing(ECAP)and subsequent intermediate heat treatment were investigated systematically by the confocal laser scanning microscope(CLSM),electron backscatter diffraction(EBSD)and split Hopkinson pressure bar(SHPB).The results show that the initial coarse grained uranium was refined from about 1000 to 6.5μm prepared by ECAP at 3 passes and subsequent heat treatment,and the corresponding dynamic yield strength increased from 135 to 390 MPa.For the ECAPed uranium samples,the relationship between grain size and yield strength could be described by classical Hall−Petch relationship,and the fitting Hall−Petch relationship for the fine grained uranium samples prepared by ECAP was drawn.
基金support from The national natural science foundation of China(Grant No.51301151)Jiangsu province natural science foundation of China(Grant No.BK20130447).
文摘As-extruded Mg-6Zn(wt.%)Alloy was subjected to severe plastic deformation(SPD)by the equal-channel angular pressing(ECAP)at 160 ℃.The results of tensile tests at room temperature showed that two passes ECAP resulted in a remarkable improvement of strength,yield strength from 200 to 265 MPa and ultimate tensile strength from 260 to 340 MPa.However,with the deformation increasing,the samples processed by ECAP for four or six passes had insignificant difference than that processed by two-pass ECAP.Massive precipitates were observed in all the Mg-6Zn alloys specimens processed by ECAP.Transmission electron microscope and X-ray diffraction results indicated that ECAP treatment induced the precipitation of laves MgZn_(2) phase and transition Mg_(4)Zn_(7) phase.The spherical MgZn_(2) particles and irregular shape Mg_(4)Zn_(7) particles coexist in the microstructure of Mg-6Zn alloy after six pass ECAP.