Some proteins perform their biological functions by changing their material states through liquid-liquid phase separation.Upon phase separation,the protein condenses into a concentrated liquid phase and sometimes into...Some proteins perform their biological functions by changing their material states through liquid-liquid phase separation.Upon phase separation,the protein condenses into a concentrated liquid phase and sometimes into a gel phase,changing its dynamic properties and intermolecular interactions,thereby regulating cellular functions.Although the biological significance of this phenomenon has been widely recognized by researchers,there is still a lack of a comprehensive understanding of the structural and dynamic properties of the protein in the condensed phase.In this phase,molecules usually contain domains with varied dynamic properties and undergo intermediate exchanges.Magic angle spinning(MAS)solid-state NMR(SSNMR)experiments are very powerful in studying rigid protein polymers such as amyloid.The incorporation of solution-like experiments into SSNMR and the development of J-coupling based MAS SSNMR techniques extend its ability to study partially mobile segments of proteins in a condensed liquid or gel phase which are not visible by solution NMR or dipolar-coupling based SSNMR.Therefore,it has been applied in studying protein condensation and has provided very important information that is hard to obtain by other techniques.展开更多
A decoupling-estimation signal parameters via rotarional invariance technique(ESPRIT) method is presented for multi-target localization with unknown mutual coupling in bistatic multiple-input multiple-output(MIMO)...A decoupling-estimation signal parameters via rotarional invariance technique(ESPRIT) method is presented for multi-target localization with unknown mutual coupling in bistatic multiple-input multiple-output(MIMO) radar.Two steps are carried out in this method.The decoupling operation between angle and mutual coupling estimates is realized by choosing the auxiliary elements on both sides of the transmit and receive uniform linear arrays(ULAs).Then the ESPRIT method is resilient against the unknown mutual coupling matrix(MCM) and can be directly utilized to estimate the direction of departure(DOD) and the direction of arrival(DOA).Moreover,the mutual coupling coefficient is estimated by finding the solution of the linear constrained optimization problem.The proposed method allows an efficient DOD and DOA estimates with automatic pairing.Simulation results are presented to verify the effectiveness of the proposed method.展开更多
We propose a method to suppress deceptive jamming by frequency diverse array (FDA) in radar electronic coun- termeasure environments. FDA offers a new range-angle-dependent beam pattern through a small frequency inc...We propose a method to suppress deceptive jamming by frequency diverse array (FDA) in radar electronic coun- termeasure environments. FDA offers a new range-angle-dependent beam pattern through a small frequency increment across elements. Due to the coupling between the angle and range, a mismatch between the test angle and physical angle occurs when the slant range on which the beam focuses is not equal to the slant range of the real target. In addition, the range of the target can be extracted by sum-difference beam except for time-delay testing, because the beam provides a range resolution in the FDA that cannot be deceived by traditional deceptive jamming. A strategy of using FDA to transmit two pulses with zero and nonzero frequency increments, respectively, is proposed to ensure that the angle of a target can be obtained by FDA. Moreover, the lo- calization performance is examined by analyzing the Cramer-Rao lower bound and detection probability. Effectiveness of the proposed method is confirmed by simulation results.展开更多
桥墩绕流冲刷是水流、泥沙和桥墩三者相互作用的结果,桥墩周围复杂的水沙运动关系是造成桥梁水毁的重要原因。定量分析桥墩冲刷地形特征规律及其与水流之间的相互作用关系,是深入研究桥墩绕流水沙作用机理及实际工程应用的重要突破口。...桥墩绕流冲刷是水流、泥沙和桥墩三者相互作用的结果,桥墩周围复杂的水沙运动关系是造成桥梁水毁的重要原因。定量分析桥墩冲刷地形特征规律及其与水流之间的相互作用关系,是深入研究桥墩绕流水沙作用机理及实际工程应用的重要突破口。本文开展2种坡降条件下、不同倾角均匀沙动床桥墩绕流冲刷试验,并沿下游方向设置4个模型倾角(0°、5°、10°、15°)。使用粒子图像测速系统(particle image velocimetry,PIV)测量桥墩绕流2维流场,并基于运动摄像恢复结构技术(structure from motion,SFM)实现冲刷地形3维重构,在此基础上分析床面冲刷3维地形结构和绕流流场特征,以构建紊流结构与冲刷地形相互耦合作用关系。结果表明:1)SFM方法可实现冲刷地形3维结构重构,冲刷试验平衡时,模型前方和两侧冲刷坑较深,后方冲刷坑出现凸起,沿水流方向倾斜顺延上升至床面。2)冲刷坑尺寸、面积和体积均随水流强度增大而增大,随倾角增大而减小;不同截面处冲刷坑面积、体积随坑深呈开口向上抛物线趋势增大。3)桥墩模型对后方流向流速扰动范围随倾角增大而减小,对展向流速影响范围随倾角增大而增大。4)随模型倾角增加,旋转强度与剪切应力影响范围均减小;剪切应力下切较易形成桥墩周围较深冲刷坑,而位于桥墩两侧大尺度流向涡向下游延伸,将促使桥墩后侧方浅长凹槽形成。展开更多
Aiming at the problem of large differences in the laying angle and posture of plants cut by the hemp harvester,which is unfavorable for the subsequent picking-up,this paper analyzed the laying process and laying angle...Aiming at the problem of large differences in the laying angle and posture of plants cut by the hemp harvester,which is unfavorable for the subsequent picking-up,this paper analyzed the laying process and laying angles,and built a conveyorplant rigid-flexible coupling model for simulating the laying of hemp plant.Moreover,the operating parameters were tested and optimized based on the central composite design theory,and carried out multi-objective optimization with the minimum laying angle as the response index.Firstly,the formation mechanism of the laying angle of hemp harvester was studied.Secondly,a test was designed with the quadratic orthogonal rotational combination test method,with the data being processed by Design-Expert.A regression mathematical model of the laying angle was built,and the influence of the interactions between factors on the laying angle was analyzed with the response surface method.Furthermore,multi-objective optimization was conducted on the regression model according to the actual production design requirements.As a result,the best combination was obtained,that is,when the forward speed is 0.7 m/s,speed ratio 1.40,and stubble height 95 mm,the minimum laying angle can be obtained,namely 124.9°.The optimization parameters were verified by the simulation and field tests.The simulation test showed that the simulated laying angle is 125.2°,with a relative error of 0.24%from the theoretical value,under the best combination of parameters.The field test showed that the average laying angle of hemp plant is 121.8°,with a relative error of 2.5%from the theoretical value,under the best combination of parameters.The results may provide a reference for the structural improvement and operating parameter control of hemp harvesters.展开更多
基金supported by the National Natural Science Foundation of China(No.32171185,No.31770790)the National Key R&D Program of China(No.2017YFA0504804).
文摘Some proteins perform their biological functions by changing their material states through liquid-liquid phase separation.Upon phase separation,the protein condenses into a concentrated liquid phase and sometimes into a gel phase,changing its dynamic properties and intermolecular interactions,thereby regulating cellular functions.Although the biological significance of this phenomenon has been widely recognized by researchers,there is still a lack of a comprehensive understanding of the structural and dynamic properties of the protein in the condensed phase.In this phase,molecules usually contain domains with varied dynamic properties and undergo intermediate exchanges.Magic angle spinning(MAS)solid-state NMR(SSNMR)experiments are very powerful in studying rigid protein polymers such as amyloid.The incorporation of solution-like experiments into SSNMR and the development of J-coupling based MAS SSNMR techniques extend its ability to study partially mobile segments of proteins in a condensed liquid or gel phase which are not visible by solution NMR or dipolar-coupling based SSNMR.Therefore,it has been applied in studying protein condensation and has provided very important information that is hard to obtain by other techniques.
基金supported by the National Natural Science Foundation of China (60702015)
文摘A decoupling-estimation signal parameters via rotarional invariance technique(ESPRIT) method is presented for multi-target localization with unknown mutual coupling in bistatic multiple-input multiple-output(MIMO) radar.Two steps are carried out in this method.The decoupling operation between angle and mutual coupling estimates is realized by choosing the auxiliary elements on both sides of the transmit and receive uniform linear arrays(ULAs).Then the ESPRIT method is resilient against the unknown mutual coupling matrix(MCM) and can be directly utilized to estimate the direction of departure(DOD) and the direction of arrival(DOA).Moreover,the mutual coupling coefficient is estimated by finding the solution of the linear constrained optimization problem.The proposed method allows an efficient DOD and DOA estimates with automatic pairing.Simulation results are presented to verify the effectiveness of the proposed method.
文摘We propose a method to suppress deceptive jamming by frequency diverse array (FDA) in radar electronic coun- termeasure environments. FDA offers a new range-angle-dependent beam pattern through a small frequency increment across elements. Due to the coupling between the angle and range, a mismatch between the test angle and physical angle occurs when the slant range on which the beam focuses is not equal to the slant range of the real target. In addition, the range of the target can be extracted by sum-difference beam except for time-delay testing, because the beam provides a range resolution in the FDA that cannot be deceived by traditional deceptive jamming. A strategy of using FDA to transmit two pulses with zero and nonzero frequency increments, respectively, is proposed to ensure that the angle of a target can be obtained by FDA. Moreover, the lo- calization performance is examined by analyzing the Cramer-Rao lower bound and detection probability. Effectiveness of the proposed method is confirmed by simulation results.
文摘桥墩绕流冲刷是水流、泥沙和桥墩三者相互作用的结果,桥墩周围复杂的水沙运动关系是造成桥梁水毁的重要原因。定量分析桥墩冲刷地形特征规律及其与水流之间的相互作用关系,是深入研究桥墩绕流水沙作用机理及实际工程应用的重要突破口。本文开展2种坡降条件下、不同倾角均匀沙动床桥墩绕流冲刷试验,并沿下游方向设置4个模型倾角(0°、5°、10°、15°)。使用粒子图像测速系统(particle image velocimetry,PIV)测量桥墩绕流2维流场,并基于运动摄像恢复结构技术(structure from motion,SFM)实现冲刷地形3维重构,在此基础上分析床面冲刷3维地形结构和绕流流场特征,以构建紊流结构与冲刷地形相互耦合作用关系。结果表明:1)SFM方法可实现冲刷地形3维结构重构,冲刷试验平衡时,模型前方和两侧冲刷坑较深,后方冲刷坑出现凸起,沿水流方向倾斜顺延上升至床面。2)冲刷坑尺寸、面积和体积均随水流强度增大而增大,随倾角增大而减小;不同截面处冲刷坑面积、体积随坑深呈开口向上抛物线趋势增大。3)桥墩模型对后方流向流速扰动范围随倾角增大而减小,对展向流速影响范围随倾角增大而增大。4)随模型倾角增加,旋转强度与剪切应力影响范围均减小;剪切应力下切较易形成桥墩周围较深冲刷坑,而位于桥墩两侧大尺度流向涡向下游延伸,将促使桥墩后侧方浅长凹槽形成。
基金supported by the Open Project of the Key Laboratory of Modern Agricultural Equipment and Technology,Ministry of Education of the PRC(Grant No.MAET202107)NSFC(52005274)+1 种基金China Agriculture Research System of MOF and MARA,Agricultural Science and Technology Independent Innovation Fund Project of Jiangsu Province(CX(22)3096)The Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(ASTIP,CAAS).
文摘Aiming at the problem of large differences in the laying angle and posture of plants cut by the hemp harvester,which is unfavorable for the subsequent picking-up,this paper analyzed the laying process and laying angles,and built a conveyorplant rigid-flexible coupling model for simulating the laying of hemp plant.Moreover,the operating parameters were tested and optimized based on the central composite design theory,and carried out multi-objective optimization with the minimum laying angle as the response index.Firstly,the formation mechanism of the laying angle of hemp harvester was studied.Secondly,a test was designed with the quadratic orthogonal rotational combination test method,with the data being processed by Design-Expert.A regression mathematical model of the laying angle was built,and the influence of the interactions between factors on the laying angle was analyzed with the response surface method.Furthermore,multi-objective optimization was conducted on the regression model according to the actual production design requirements.As a result,the best combination was obtained,that is,when the forward speed is 0.7 m/s,speed ratio 1.40,and stubble height 95 mm,the minimum laying angle can be obtained,namely 124.9°.The optimization parameters were verified by the simulation and field tests.The simulation test showed that the simulated laying angle is 125.2°,with a relative error of 0.24%from the theoretical value,under the best combination of parameters.The field test showed that the average laying angle of hemp plant is 121.8°,with a relative error of 2.5%from the theoretical value,under the best combination of parameters.The results may provide a reference for the structural improvement and operating parameter control of hemp harvesters.