为了改善预应力闸墩受力状态,同时在节约成本的基础上,保证其结构的安全运行,从锚块与闸墩接触方式、锚索吨位和次锚索位置三个方面进行优化研究,对预应力闸墩进行优化分析,进而改善闸墩颈部、锚块和锚固洞的应力状态。结果表明:锚块底...为了改善预应力闸墩受力状态,同时在节约成本的基础上,保证其结构的安全运行,从锚块与闸墩接触方式、锚索吨位和次锚索位置三个方面进行优化研究,对预应力闸墩进行优化分析,进而改善闸墩颈部、锚块和锚固洞的应力状态。结果表明:锚块底部与闸墩采用分离式接触方式,可以大大降低锚块下游面与闸墩交界处的拉应力。预应力锚索的拉锚系数的增大有利于减小闸墩颈部的拉应力,但同时锚块和锚固洞周围的拉应力会有所增大。次锚索靠近锚块下游面,可以更好地抵消主锚索对锚块产生的局部拉应力,但对闸墩颈部和锚固洞的影响很小。此算例推荐锚块底部与闸墩采用分离式接触方式;拉锚系数采用1.95,即主锚索永存吨位为3 200 k N,次锚索永存吨位为1 900 k N;水平次锚索尽量靠近锚块下游面布置。展开更多
In order to obtain space-time coupling relationship of anchor-cable to improve supporting effect for deep coal mine rock roadway, FLAC3D was used to investigate into mechanical characteristics of the roadway whose cro...In order to obtain space-time coupling relationship of anchor-cable to improve supporting effect for deep coal mine rock roadway, FLAC3D was used to investigate into mechanical characteristics of the roadway whose crosssection shape was vertical wall and semi-circular arch when the roadway was supported by bolts and metal mesh. The results show that the extent of stress concentrations, the range failure zone, and the deformation at the roof center and two spandrels of roadway are greater than those at other positions, except at the floor. The reasonable positions of anchor-cable supporting are the roof center and two spandrels of roadway. The anchor-cable should be installed at good time with bolts supporting after roadway driving be- cause it can improve the stress states of deep surrounding rock around the roadway and control the roadway deformation effec- tively. The engineering practice has proven that the sustained deformation of deep surrounding rocks is effectively controlled when the anchor-cable supporting is adopted at reasonable positions of the roadway at good time.展开更多
文摘为了改善预应力闸墩受力状态,同时在节约成本的基础上,保证其结构的安全运行,从锚块与闸墩接触方式、锚索吨位和次锚索位置三个方面进行优化研究,对预应力闸墩进行优化分析,进而改善闸墩颈部、锚块和锚固洞的应力状态。结果表明:锚块底部与闸墩采用分离式接触方式,可以大大降低锚块下游面与闸墩交界处的拉应力。预应力锚索的拉锚系数的增大有利于减小闸墩颈部的拉应力,但同时锚块和锚固洞周围的拉应力会有所增大。次锚索靠近锚块下游面,可以更好地抵消主锚索对锚块产生的局部拉应力,但对闸墩颈部和锚固洞的影响很小。此算例推荐锚块底部与闸墩采用分离式接触方式;拉锚系数采用1.95,即主锚索永存吨位为3 200 k N,次锚索永存吨位为1 900 k N;水平次锚索尽量靠近锚块下游面布置。
基金Supported by the Science and Technological Fund of Anhui Province for Outstanding Youth (1108085J02), the National Natural Science Foundation of Anhui Province (K J2010A090)
文摘In order to obtain space-time coupling relationship of anchor-cable to improve supporting effect for deep coal mine rock roadway, FLAC3D was used to investigate into mechanical characteristics of the roadway whose crosssection shape was vertical wall and semi-circular arch when the roadway was supported by bolts and metal mesh. The results show that the extent of stress concentrations, the range failure zone, and the deformation at the roof center and two spandrels of roadway are greater than those at other positions, except at the floor. The reasonable positions of anchor-cable supporting are the roof center and two spandrels of roadway. The anchor-cable should be installed at good time with bolts supporting after roadway driving be- cause it can improve the stress states of deep surrounding rock around the roadway and control the roadway deformation effec- tively. The engineering practice has proven that the sustained deformation of deep surrounding rocks is effectively controlled when the anchor-cable supporting is adopted at reasonable positions of the roadway at good time.