期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Codimensional matrix pairing perspective of BYY harmony learning:hierarchy of bilinear systems,joint decomposition of data-covariance,and applications of network biology
1
作者 Lei XU 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2011年第1期86-119,共34页
One paper in a preceding issue of this journal has introduced the Bayesian Ying-Yang(BYY)harmony learning from a perspective of problem solving,parameter learning,and model selection.In a complementary role,the paper ... One paper in a preceding issue of this journal has introduced the Bayesian Ying-Yang(BYY)harmony learning from a perspective of problem solving,parameter learning,and model selection.In a complementary role,the paper provides further insights from another perspective that a co-dimensional matrix pair(shortly co-dim matrix pair)forms a building unit and a hierarchy of such building units sets up the BYY system.The BYY harmony learning is re-examined via exploring the nature of a co-dim matrix pair,which leads to improved learning performance with refined model selection criteria and a modified mechanism that coordinates automatic model selection and sparse learning.Besides updating typical algorithms of factor analysis(FA),binary FA(BFA),binary matrix factorization(BMF),and nonnegative matrix factorization(NMF)to share such a mechanism,we are also led to(a)a new parametrization that embeds a de-noise nature to Gaussian mixture and local FA(LFA);(b)an alternative formulation of graph Laplacian based linear manifold learning;(c)a codecomposition of data and covariance for learning regularization and data integration;and(d)a co-dim matrix pair based generalization of temporal FA and state space model.Moreover,with help of a co-dim matrix pair in Hadamard product,we are led to a semi-supervised formation for regression analysis and a semi-blind learning formation for temporal FA and state space model.Furthermore,we address that these advances provide with new tools for network biology studies,including learning transcriptional regulatory,Protein-Protein Interaction network alignment,and network integration. 展开更多
关键词 Bayesian Ying-Yang(BYY)harmony learning automatic model selection bi-linear stochastic system co-dimensional matrix pair sparse learning denoise embedded Gaussian mixture de-noise embedded local factor analysis(lfa) bi-clustering manifold learning temporal factor analysis(TFA) semi-blind learning attributed graph matching generalized linear model(GLM) gene transcriptional regulatory network alignment network integration
原文传递
闪光法测试聚合物薄膜材料导热性能的研究
2
作者 赵瑾 高梦岩 +4 位作者 崔芃 陈宇迪 张梅 邹涛 翟磊 《绝缘材料》 CAS 北大核心 2023年第2期19-25,共7页
电子与微电子领域的发展极大地推动了导热聚合物薄膜材料的研究,然而适用于薄膜材料的导热性能分析技术及测试方法仍缺少系统研究。闪光法是最具代表性的瞬态法导热分析技术,本文系统介绍了闪光法的基本原理、测试条件以及适用范围等,... 电子与微电子领域的发展极大地推动了导热聚合物薄膜材料的研究,然而适用于薄膜材料的导热性能分析技术及测试方法仍缺少系统研究。闪光法是最具代表性的瞬态法导热分析技术,本文系统介绍了闪光法的基本原理、测试条件以及适用范围等,并以导热聚酰亚胺薄膜材料为代表,详细分析了聚合物薄膜材料的厚度、表面质量、前处理条件、仪器参数设置以及数据分析处理等因素对测试结果的影响,并探讨了闪光法测试聚合物薄膜材料不同方向导热性能的应用。结果表明:样品的厚度准确性、表面质量、透明性均会影响测试结果,采取溅射镀金和喷涂石墨的预处理方法可有效提高测试准确性。同时,测试仪器的参数设置和数据处理方法会影响温度-时间曲线形状及拟合结果,需要根据聚合物薄膜样品的特性来选择适宜的测试条件。 展开更多
关键词 测试方法 闪光法 聚合物薄膜 导热性能
下载PDF
基于信道补偿的说话人识别算法 被引量:3
3
作者 申铉京 翟玉杰 +2 位作者 卢禹彤 王玉 陈海鹏 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2016年第3期870-875,共6页
现有说话人识别算法普遍受信道因素的干扰,为了提高算法的准确率,在特征级利用特征弯折算法对语音特征参数进行处理,在模型级利用因子分析技术对说话人混合高斯模型(GMM)进行信道处理。对端点进行检测后,利用特征弯折算法对语音特征参... 现有说话人识别算法普遍受信道因素的干扰,为了提高算法的准确率,在特征级利用特征弯折算法对语音特征参数进行处理,在模型级利用因子分析技术对说话人混合高斯模型(GMM)进行信道处理。对端点进行检测后,利用特征弯折算法对语音特征参数梅尔倒谱系数(MFCC)进行处理,去除线性信道和背景噪声的影响,并建立说话人GMM。然后利用因子分析技术拟合说话人特征空间与信道空间的差异,去除信道因子的影响。最后提取高斯超向量并通过支持向量机(SVM)得到识别结果。实验结果证明了信道补偿算法与GMM-SVM相结合能获得更好的识别率,并能保证算法的鲁棒性。 展开更多
关键词 计算机应用 说话人识别 支持向量机 混合高斯模型 特征弯折 隐藏因子分析
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部