根据信道统计特性,研究了放大转发(amplify-and-forward,AF)协作中继网络中的中继选择协作通信方法.首先分析指出在等功率条件下,当信噪比小于某个门限时,选择单个中继节点进行转发(pre-select single relay AF,SAF)比所有节点都转发(al...根据信道统计特性,研究了放大转发(amplify-and-forward,AF)协作中继网络中的中继选择协作通信方法.首先分析指出在等功率条件下,当信噪比小于某个门限时,选择单个中继节点进行转发(pre-select single relay AF,SAF)比所有节点都转发(all relays AF,AAF)的中断概率小.基于此信噪比门限提出一种中继选择协作通信方法,并且指出这种选择方法使得SAF的中断概率最小;然后结合功率分配提出了一种使中断概率最小化的最优中继选择协作通信方法;最后为了降低复杂度,提出了一种次优中继选择协作通信方法.仿真结果表明,这种次优方法和最优中继选择协作通信方法相比,性能相近.展开更多
Non-orthogonal multiple access(NOMA)technique is an expert on channel differences exploiting.In this paper,a dual-hop NOMA-based cooperative relaying network where a best relay is selected as an active node to accompl...Non-orthogonal multiple access(NOMA)technique is an expert on channel differences exploiting.In this paper,a dual-hop NOMA-based cooperative relaying network where a best relay is selected as an active node to accomplish the communication between a source and a destination is discussed.We assume that both decode-and-forward(DF)and amplify-and-forward(AF)protocols are applied to the selected relay.The metrics that ergodic sum-rate and outage probability are investigated,and the closed-form expressions of the latter for DF and AF protocols are derived.Numerical and simulation results are conducted to verify the validity of the theoretical analysis,in which we can see that the NOMA based DF relaying is better than the NOMA based AF relaying and other existing NOMA-based cooperative communication schemes.展开更多
In this paper,an intelligent reflecting surface(IRS)-and-unmanned aerial vehicle(UAV)-assisted two-way amplify-and-forward(AF)relay network in maritime Internet of Things(IoT)is proposed,where ship1(S1)and ship2(S2)ca...In this paper,an intelligent reflecting surface(IRS)-and-unmanned aerial vehicle(UAV)-assisted two-way amplify-and-forward(AF)relay network in maritime Internet of Things(IoT)is proposed,where ship1(S1)and ship2(S2)can be viewed as data collecting centers.To enhance the message exchange rate between S1 and S2,a problem of maximizing minimum rate is cast,where the variables,namely AF relay beamforming matrix and IRS phase shifts of two time slots,need to be optimized.To achieve a maximum rate,a low-complexity alternately iterative(AI)scheme based on zero forcing and successive convex approximation(LC-ZF-SCA)algorithm is presented.To obtain a significant rate enhancement,a high-performance AI method based on one step,semidefinite programming and penalty SCA(ONSSDP-PSCA)is proposed.Simulation results show that by the proposed LC-ZF-SCA and ONS-SDP-PSCA methods,the rate of the IRS-and-UAV-assisted AF relay network surpass those of with random phase and only AF relay networks.Moreover,ONS-SDP-PSCA perform better than LC-ZF-SCA in aspect of rate.展开更多
This article addresses the design problem of selecting an appropriate relay in amplify-and-forward (AF) cooperative diversity systems. In this regard, this article focuses on relay selection based on partial channel...This article addresses the design problem of selecting an appropriate relay in amplify-and-forward (AF) cooperative diversity systems. In this regard, this article focuses on relay selection based on partial channel knowledge only across the source and relay links. In particular, the two fundamental questions will be answered, that is, whether to cooperate and whom to cooperate with. Through answering these two questions, an improved relay selection strategy based on partial relay link, which emphasizes that cooperation happens when necessary, is proposed to aim at maximizing the average mutual information. Then a joint optimization, in terms of power allocation and relay selection, is employed to guarantee a robust performance for relay selection based on partial relay link. Optimum power is allocated between the source and the selected relay to maximize the output signal-to-noise (SNR) at the destination. Simulation results turn out that the improved scheme can achieve better performance than previous work and the robust performance can be guaranteed by employing joint optimization.展开更多
Free space optical(FSO)communication has recently aroused great interest in academia due to its unique features,such as large transmission band,high data rates,and strong anti-electromagnetic interference.With the aim...Free space optical(FSO)communication has recently aroused great interest in academia due to its unique features,such as large transmission band,high data rates,and strong anti-electromagnetic interference.With the aim of evaluating the performance of an FSO communication system and extending the line-of-sight transmission distance,we propose an unmanned aerial vehicle(UAV)-assisted dual-hop FSO communication system equipped with amplifyand-forward protocol at the relay node.Specifically,we consider impairments of atmospheric absorption,pointing errors,atmospheric turbulence,and link interruptions due to angle-of-arrival fluctuations in the relay system.The Gamma-Gamma and Malaga distributions are used to model the influence of atmospheric turbulence on the source-to-UAV and UAVto-destination links,respectively.We derive closedform expressions of the probability density function(PDF)and cumulative distribution function(CDF)for the proposed communication system,in terms of the Meijer-G function.Based on the precise PDF and CDF,analytical expressions for the outage probability,average bit error rate,and ergodic capacity are proposed with the aid of the extended generalized bivariate Fox’s H function.Finally,we show that there is a match between the analytical results and numerical results,and we analyze the influence of the system and channel parameters on the performance.展开更多
In this paper, we consider the joint relay selection and power allocation problem for two-way relay systems with multiple relay nodes. Traditionally, relay selection schemes are primarily focused on selecting one rela...In this paper, we consider the joint relay selection and power allocation problem for two-way relay systems with multiple relay nodes. Traditionally, relay selection schemes are primarily focused on selecting one relay node to maximize the transmission sum rate or minimize the outage probability. If so, it is possible to cause certain relay nodes overloaded. In addition, the joint relay selection and power allocation problem is a mixed integer program problem and prohibitive in terms of complexity. Therefore, we propose a novel low complexity joint relay selection and power allocation algorithm with proportional fair scheduling to get the load-balancing among potential relays. Simulation results turn out that, compared with round-robin schemes and max sum rate schemes, the proposed algorithm can achieve the tradeoff between system transmission sum rate and load-balancing.展开更多
基金supported in part by the National Natural Science Foundation of China under Grants 61971149,61431005,and 61971198in part by the Natural Science Foundation of Guangdong Province under Grant 2016A030308006+1 种基金in part by the Guangdong Basic and Applied Basic Research Foundation under Grant 2019A1515011040in part by the Young Innovative Talents Project of Guangdong Province under Grant 2018GkQNCX118.
文摘Non-orthogonal multiple access(NOMA)technique is an expert on channel differences exploiting.In this paper,a dual-hop NOMA-based cooperative relaying network where a best relay is selected as an active node to accomplish the communication between a source and a destination is discussed.We assume that both decode-and-forward(DF)and amplify-and-forward(AF)protocols are applied to the selected relay.The metrics that ergodic sum-rate and outage probability are investigated,and the closed-form expressions of the latter for DF and AF protocols are derived.Numerical and simulation results are conducted to verify the validity of the theoretical analysis,in which we can see that the NOMA based DF relaying is better than the NOMA based AF relaying and other existing NOMA-based cooperative communication schemes.
基金supported in part by the National Natural Science Foundation of China (Nos.U22A2002, and 62071234)the Hainan Province Science and Technology Special Fund (ZDKJ2021022)+1 种基金the Scientific Research Fund Project of Hainan University under Grant KYQD(ZR)-21008the Collaborative Innovation Center of Information Technology, Hainan University (XTCX2022XXC07)
文摘In this paper,an intelligent reflecting surface(IRS)-and-unmanned aerial vehicle(UAV)-assisted two-way amplify-and-forward(AF)relay network in maritime Internet of Things(IoT)is proposed,where ship1(S1)and ship2(S2)can be viewed as data collecting centers.To enhance the message exchange rate between S1 and S2,a problem of maximizing minimum rate is cast,where the variables,namely AF relay beamforming matrix and IRS phase shifts of two time slots,need to be optimized.To achieve a maximum rate,a low-complexity alternately iterative(AI)scheme based on zero forcing and successive convex approximation(LC-ZF-SCA)algorithm is presented.To obtain a significant rate enhancement,a high-performance AI method based on one step,semidefinite programming and penalty SCA(ONSSDP-PSCA)is proposed.Simulation results show that by the proposed LC-ZF-SCA and ONS-SDP-PSCA methods,the rate of the IRS-and-UAV-assisted AF relay network surpass those of with random phase and only AF relay networks.Moreover,ONS-SDP-PSCA perform better than LC-ZF-SCA in aspect of rate.
基金supported by Sino-Swedish IMT-Advanced Cooperation Project (2008DFA11780)Canada-China Scientific and Technological Cooperation,the National Natural Science Foundation of China (60802033,60873190)the Hi-Tech Research and Development Program of China (2008AA01Z211)
文摘This article addresses the design problem of selecting an appropriate relay in amplify-and-forward (AF) cooperative diversity systems. In this regard, this article focuses on relay selection based on partial channel knowledge only across the source and relay links. In particular, the two fundamental questions will be answered, that is, whether to cooperate and whom to cooperate with. Through answering these two questions, an improved relay selection strategy based on partial relay link, which emphasizes that cooperation happens when necessary, is proposed to aim at maximizing the average mutual information. Then a joint optimization, in terms of power allocation and relay selection, is employed to guarantee a robust performance for relay selection based on partial relay link. Optimum power is allocated between the source and the selected relay to maximize the output signal-to-noise (SNR) at the destination. Simulation results turn out that the improved scheme can achieve better performance than previous work and the robust performance can be guaranteed by employing joint optimization.
文摘Free space optical(FSO)communication has recently aroused great interest in academia due to its unique features,such as large transmission band,high data rates,and strong anti-electromagnetic interference.With the aim of evaluating the performance of an FSO communication system and extending the line-of-sight transmission distance,we propose an unmanned aerial vehicle(UAV)-assisted dual-hop FSO communication system equipped with amplifyand-forward protocol at the relay node.Specifically,we consider impairments of atmospheric absorption,pointing errors,atmospheric turbulence,and link interruptions due to angle-of-arrival fluctuations in the relay system.The Gamma-Gamma and Malaga distributions are used to model the influence of atmospheric turbulence on the source-to-UAV and UAVto-destination links,respectively.We derive closedform expressions of the probability density function(PDF)and cumulative distribution function(CDF)for the proposed communication system,in terms of the Meijer-G function.Based on the precise PDF and CDF,analytical expressions for the outage probability,average bit error rate,and ergodic capacity are proposed with the aid of the extended generalized bivariate Fox’s H function.Finally,we show that there is a match between the analytical results and numerical results,and we analyze the influence of the system and channel parameters on the performance.
基金supported by the Sino-Swedish IMT-Advanced Cooperation Project (2008DFA11780)the Canada-China Scientific and Technological Cooperation (2010DFA11320)+3 种基金the National Natural Science Foundation of China (60802033, 60873190)the Hi-Tech Research and Development Program of China (2008AA01Z211)the Fundamental Research Funds for the Central Universities (2009RC0308, G470209)the Important National Science and Technology Specific Projects (2010ZX03007-003-04,2010ZX03005-001-03)
文摘In this paper, we consider the joint relay selection and power allocation problem for two-way relay systems with multiple relay nodes. Traditionally, relay selection schemes are primarily focused on selecting one relay node to maximize the transmission sum rate or minimize the outage probability. If so, it is possible to cause certain relay nodes overloaded. In addition, the joint relay selection and power allocation problem is a mixed integer program problem and prohibitive in terms of complexity. Therefore, we propose a novel low complexity joint relay selection and power allocation algorithm with proportional fair scheduling to get the load-balancing among potential relays. Simulation results turn out that, compared with round-robin schemes and max sum rate schemes, the proposed algorithm can achieve the tradeoff between system transmission sum rate and load-balancing.