The leaching kinetics of low-grade copper ore with high-alkality gangues was studied in ammonia-ammonium sulphate solution.The main parameters,such as ammonia and ammonium sulphate concentrations,particle size,solid-t...The leaching kinetics of low-grade copper ore with high-alkality gangues was studied in ammonia-ammonium sulphate solution.The main parameters,such as ammonia and ammonium sulphate concentrations,particle size,solid-to-liquid ratio and reaction temperature,were chosen in the experiments.The results show that the increase of temperature,concentrations of ammonia and ammonium sulphate is propitious to the leaching rate of copper ore.The leaching rate increases with the decrease of particle size and solid-to-liquid ratio.The leaching rate is controlled by the diffusion through the ash layer and the activation energy is determined to be 25.54 kJ/mol.A semi-empirical equation was proposed to describe the leaching kinetics.展开更多
In the present paper, separation of nickel and cobalt in ammonia-ammonium carbonate solution that simulates pregnant leach solution of Caron Process by solvent extraction using LIX 84-ICNS was studied. LIX 84-ICNS is ...In the present paper, separation of nickel and cobalt in ammonia-ammonium carbonate solution that simulates pregnant leach solution of Caron Process by solvent extraction using LIX 84-ICNS was studied. LIX 84-ICNS is a novel extractant which is still being studied, especially for nickel and cobalt separation in ammonia-ammonium carbonate solution. A series of solvent extraction tests were performed at various equilibrium pH, temperature, extractant concentration, and volume ratio of organic to aqueous solution (O/A ratio). The investigation results show that the highest nickel and cobalt extraction percentages of 99.8% and 90.3% were obtained from the extraction test at equilibrium pH of 8.75, temperature of 55°C, extractant concentration of 40% (v/v) and O/A ratio of 1/1, respectively. Oxidation of cobalt in aqueous solution prior to extraction is needed to minimize co-extraction of cobalt. Co-extracted cobalt can be decreased from 90.3% to 30.3% by mixing 1% (v/v) H2O22 in aqueous solution prior to the extraction stage. It was found that nickel and cobalt extractions by LIX 84-ICNS are endothermic processes with enthalpy changes of +171.03 and +7.64 kJ/mole, respectively. Based on constructed McCabe-Thiele Diagram, nickel extraction level of more than 99.9% can be obtained in 2 stages at O/A ratio of 0.5. The highest stripping percentages of nickel and cobalt of 98.82% and 3.16% respectively were obtained at 200 g/l H2SO4 stripping agent.展开更多
Ammonium uptake in plant roots is mediated by AMT/MEP/Rh-type ammonium transporters. Out of five AMTs being expressed in Arabidopsis roots, four AMT1-type transporters contribute to ammonium uptake, whereas no physiol...Ammonium uptake in plant roots is mediated by AMT/MEP/Rh-type ammonium transporters. Out of five AMTs being expressed in Arabidopsis roots, four AMT1-type transporters contribute to ammonium uptake, whereas no physiological function has so far been assigned to the only homolog belonging to the MEP subfamily, AMT2;1. Based on the observation that under ammonium supply, the transcript levels of AMT2;1 increased and its promoter activity shifted preferentially to the pericycle, we assessed the contribution of AMT2;1 to xylem loading. When exposed to ^15N-labeled ammonium, amt2;1 mutant lines translocated less tracer to the shoots and contained less ammonium in the xylem sap. Moreover, in an amtl;1 amtl;2 amtl ;3 amt2;1 quadruple mutant (qko), co-expression of AMT2;1 with either AMT1;2 or AMT1;3 significantly enhanced ^15N translocation to shoots, indicating a cooperative action between AMT2;1 and AMT1 transporters. Under N deficiency, proAMT2;1-GFP lines showed enhanced promoter activity predominantly in cortical root cells, which coincided with elevated ammonium influx conferred by AMT2;1 at millimolar sub- strate concentrations. Our results indicate that in addition to contributing moderately to root uptake in the low-affinity range, AMT2;1 functions mainly in root-to-shoot translocation of ammonium, depending on its Cell-type-specific expression in response to the plant nutritional status and to local ammonium gradients.展开更多
基金Project(2007CB613601) supported by the National Basic Research Program of ChinaProject(10C1095) supported by the Foundation of Hunan Educational Committee,China
文摘The leaching kinetics of low-grade copper ore with high-alkality gangues was studied in ammonia-ammonium sulphate solution.The main parameters,such as ammonia and ammonium sulphate concentrations,particle size,solid-to-liquid ratio and reaction temperature,were chosen in the experiments.The results show that the increase of temperature,concentrations of ammonia and ammonium sulphate is propitious to the leaching rate of copper ore.The leaching rate increases with the decrease of particle size and solid-to-liquid ratio.The leaching rate is controlled by the diffusion through the ash layer and the activation energy is determined to be 25.54 kJ/mol.A semi-empirical equation was proposed to describe the leaching kinetics.
文摘In the present paper, separation of nickel and cobalt in ammonia-ammonium carbonate solution that simulates pregnant leach solution of Caron Process by solvent extraction using LIX 84-ICNS was studied. LIX 84-ICNS is a novel extractant which is still being studied, especially for nickel and cobalt separation in ammonia-ammonium carbonate solution. A series of solvent extraction tests were performed at various equilibrium pH, temperature, extractant concentration, and volume ratio of organic to aqueous solution (O/A ratio). The investigation results show that the highest nickel and cobalt extraction percentages of 99.8% and 90.3% were obtained from the extraction test at equilibrium pH of 8.75, temperature of 55°C, extractant concentration of 40% (v/v) and O/A ratio of 1/1, respectively. Oxidation of cobalt in aqueous solution prior to extraction is needed to minimize co-extraction of cobalt. Co-extracted cobalt can be decreased from 90.3% to 30.3% by mixing 1% (v/v) H2O22 in aqueous solution prior to the extraction stage. It was found that nickel and cobalt extractions by LIX 84-ICNS are endothermic processes with enthalpy changes of +171.03 and +7.64 kJ/mole, respectively. Based on constructed McCabe-Thiele Diagram, nickel extraction level of more than 99.9% can be obtained in 2 stages at O/A ratio of 0.5. The highest stripping percentages of nickel and cobalt of 98.82% and 3.16% respectively were obtained at 200 g/l H2SO4 stripping agent.
文摘Ammonium uptake in plant roots is mediated by AMT/MEP/Rh-type ammonium transporters. Out of five AMTs being expressed in Arabidopsis roots, four AMT1-type transporters contribute to ammonium uptake, whereas no physiological function has so far been assigned to the only homolog belonging to the MEP subfamily, AMT2;1. Based on the observation that under ammonium supply, the transcript levels of AMT2;1 increased and its promoter activity shifted preferentially to the pericycle, we assessed the contribution of AMT2;1 to xylem loading. When exposed to ^15N-labeled ammonium, amt2;1 mutant lines translocated less tracer to the shoots and contained less ammonium in the xylem sap. Moreover, in an amtl;1 amtl;2 amtl ;3 amt2;1 quadruple mutant (qko), co-expression of AMT2;1 with either AMT1;2 or AMT1;3 significantly enhanced ^15N translocation to shoots, indicating a cooperative action between AMT2;1 and AMT1 transporters. Under N deficiency, proAMT2;1-GFP lines showed enhanced promoter activity predominantly in cortical root cells, which coincided with elevated ammonium influx conferred by AMT2;1 at millimolar sub- strate concentrations. Our results indicate that in addition to contributing moderately to root uptake in the low-affinity range, AMT2;1 functions mainly in root-to-shoot translocation of ammonium, depending on its Cell-type-specific expression in response to the plant nutritional status and to local ammonium gradients.