The hydration of cyclohexene was determined in a stirred tank of 100 mL in a batch mode in the presence of modified or unmodified resin as catalyst. The ion-exchange sulfonate resin was modified with alkyl secondary a...The hydration of cyclohexene was determined in a stirred tank of 100 mL in a batch mode in the presence of modified or unmodified resin as catalyst. The ion-exchange sulfonate resin was modified with alkyl secondary amine. At an optimum amination rate of 15%, the conversion of cyclohexene reached to 22% and the selectivity of cyclohexanol was 95.6%. In a temperature range of 90--150℃, the activity and selectivity of the modified resin ca- talyst were much higher than those of the unmodified resin catalyst, which was attributed to the inclusion formed between cyclohexene and alkyl chain and also the quasi-lipophilic phase formed around the outer surface of resin beads. The formed quasi-lipophilic phase formed enhanced the conversion of cyclohexene and depressed the forma- tion of by-products.展开更多
Among the current technologies for post-combustion CO2 capture,amine-based chemical absorption appears to be the most technologically mature and commercially viable method.This review highlights the opportunities and ...Among the current technologies for post-combustion CO2 capture,amine-based chemical absorption appears to be the most technologically mature and commercially viable method.This review highlights the opportunities and challenges in post-combustion CO2 capture using amine-based chemical absorption technologies.In addition,this review provides current types and emerging trends for chemical solvents.The issues and performance of amine solvents are reviewed and addressed in terms of thermodynamics,kinetics,mass transfer,regeneration and solvent management.This review also looks at emerging and future trends in post-combustion CO2 capture using chemical solvents in the near to mid-term.展开更多
文摘The hydration of cyclohexene was determined in a stirred tank of 100 mL in a batch mode in the presence of modified or unmodified resin as catalyst. The ion-exchange sulfonate resin was modified with alkyl secondary amine. At an optimum amination rate of 15%, the conversion of cyclohexene reached to 22% and the selectivity of cyclohexanol was 95.6%. In a temperature range of 90--150℃, the activity and selectivity of the modified resin ca- talyst were much higher than those of the unmodified resin catalyst, which was attributed to the inclusion formed between cyclohexene and alkyl chain and also the quasi-lipophilic phase formed around the outer surface of resin beads. The formed quasi-lipophilic phase formed enhanced the conversion of cyclohexene and depressed the forma- tion of by-products.
基金Supported by the National Natural Science Foundation of China(21276068,U1362112and 21376067,21476064)the National Key Technology R&D Program(2012BAC26B01)+4 种基金Innovative Research Team Development Plan of the Ministry of Education of the People's Republic of China(IRT1238)Specialized Research Fund for the Doctoral Program of Higher Education(20130161110025)Technology Development contract(Shanyan 12-34)Innovative Research Program for Graduate Student of Hunan Province,China(CX2013B158)Key project of international®ional scientific and technological cooperation of Hunan Provincial science and technology plan(2014WK2037)
文摘Among the current technologies for post-combustion CO2 capture,amine-based chemical absorption appears to be the most technologically mature and commercially viable method.This review highlights the opportunities and challenges in post-combustion CO2 capture using amine-based chemical absorption technologies.In addition,this review provides current types and emerging trends for chemical solvents.The issues and performance of amine solvents are reviewed and addressed in terms of thermodynamics,kinetics,mass transfer,regeneration and solvent management.This review also looks at emerging and future trends in post-combustion CO2 capture using chemical solvents in the near to mid-term.