Thermal fatigue failure is one of the main failure forms of 8407 steel. Aiming at improving the anti-thermal-fatigue property of 8407 steel, the method of aluminization and subsequent oxidation is employed to form a c...Thermal fatigue failure is one of the main failure forms of 8407 steel. Aiming at improving the anti-thermal-fatigue property of 8407 steel, the method of aluminization and subsequent oxidation is employed to form a complex oxide on the die surface. Thermal fatigue test was performed with the cycle heating method to compare thermal fatigue behaviors of 8407 steel samples with and without aluminization and oxidation treatment. In the test, thermal fatigue crack morphology formed on the surface was observed by scanning electron microscope (SEM) and then variations of initiating rate and propagating rate of main crack of thermal fatigue with cycles were investigated. Moreover, the thermal fatigue property was judged according to thermal fatigue main crack length and its reciprocal. Finally, the anti-thermal-fatigue mechanism of oxide film was clarified. The results show that the surface aluminization and oxidation treatment can improve both the initiating resistance and propagating resistance of thermal fatigue crack, which will improve the anti-thermal-fatigue property of 8407 steel.展开更多
基金The Natural Science Foundation of Jiangsu Province of China(BK2009104)The Innovation Program of Graduated Student of Jiangsu Province(CXZZ12-731,CXLX11-0388)
基金Item Sponsored by Beijing Company Limited of ASSAB Tooling(2008-0-1-207)
文摘Thermal fatigue failure is one of the main failure forms of 8407 steel. Aiming at improving the anti-thermal-fatigue property of 8407 steel, the method of aluminization and subsequent oxidation is employed to form a complex oxide on the die surface. Thermal fatigue test was performed with the cycle heating method to compare thermal fatigue behaviors of 8407 steel samples with and without aluminization and oxidation treatment. In the test, thermal fatigue crack morphology formed on the surface was observed by scanning electron microscope (SEM) and then variations of initiating rate and propagating rate of main crack of thermal fatigue with cycles were investigated. Moreover, the thermal fatigue property was judged according to thermal fatigue main crack length and its reciprocal. Finally, the anti-thermal-fatigue mechanism of oxide film was clarified. The results show that the surface aluminization and oxidation treatment can improve both the initiating resistance and propagating resistance of thermal fatigue crack, which will improve the anti-thermal-fatigue property of 8407 steel.