This research was conducted on the non-disturbed native alpine Kobresia meadow(YF) and the severely degraded meadow(SDL) of Dari County of Qinghai Province.By a density fractionation approach,each soil sample was divi...This research was conducted on the non-disturbed native alpine Kobresia meadow(YF) and the severely degraded meadow(SDL) of Dari County of Qinghai Province.By a density fractionation approach,each soil sample was divided into two fractions:light fraction(LF) and heavy fraction(HF).The obtained fractions were analyzed for organic carbon(OC) and nitrogen(N) concentrations.The results showed:(1) the OC concentration in HF and LF was 3.84% and 28.63% respectively while the nitrogen concentration in HF and LF was 0.362% and 1.192% respectively in 0-10 cm depth.C:N ratio was 10.6 in HF and 23.8 in LF respectively.(2) As far as the ratio of OC in given fraction to that in gross sample was concerned,dominance of OC in HF was obvious in the whole soil profile.OC in HF increased from 78.95% to 90.33%,while OC in LF decreased from 21.05% to 9.68% with depths.(3) Soil total OC amounted to 47.47 in YF while 17.63 g.kg-1 in SDL,in which the OC content in HF decreased from 37.31 to 16.01 g.kg-1 while OC content in LF decreased from 10.01 to 1.62 g.kg-1.In other words,results of OC and N content show meadow degradation led to the loss of 57% OC in HF and 84% OC in LF from originally native ecosystem on alpine meadow.In addition,meadow degradation led to the loss of 43% N in HF and 79% N in LF from originally native ecosystem on alpine meadow.(4) The main reason for loss of C and N in LF during meadow degradation was not attributed to the decrease of OC and N concentration in LF and LF,but to the decrease in LF dry weight.Loss of N was far lower than loss of C in HF.This may suggest that there is difference in protection mode of C and N in HF.展开更多
[Objective] To investigate the relationship between the grassland caterpillar with different grades and the structure of alpine Kobresia meadow or soil feature. [Method] A total of 10 plots (20.00 m × 20.00 m) ...[Objective] To investigate the relationship between the grassland caterpillar with different grades and the structure of alpine Kobresia meadow or soil feature. [Method] A total of 10 plots (20.00 m × 20.00 m) were chosen. In each plot, five smaller plots (5.00 m × 5.00 m) were randomly selected and six sample plots (0.25 m × 0.25 m) were then selected in each smaller plot. The biomass, vegetation height, grasslayer thickness, bare land area, soil moisture and total vegetation cover degree were determined. Data were analyzed statistically by Excel 2003 and SPSS 13.0 software. [ Result] There was a significant difference (P 〈 0.05) between the grassland caterpillars at different hazard grades and the structure of alpine Kobresia meadow or soil properties. [ Conclusion] With the increase of grassland caterpillar density, the plant community structure of alpine Kobresia meadows changes from sedge family-dominant community to the forbs-dominant community.展开更多
基金Supported by National Natural Science Foundation of China (Grant No. 30660120)Science Support Project in the Source Region of the Three Rivers (Grant No. 2005-SN-2)
文摘This research was conducted on the non-disturbed native alpine Kobresia meadow(YF) and the severely degraded meadow(SDL) of Dari County of Qinghai Province.By a density fractionation approach,each soil sample was divided into two fractions:light fraction(LF) and heavy fraction(HF).The obtained fractions were analyzed for organic carbon(OC) and nitrogen(N) concentrations.The results showed:(1) the OC concentration in HF and LF was 3.84% and 28.63% respectively while the nitrogen concentration in HF and LF was 0.362% and 1.192% respectively in 0-10 cm depth.C:N ratio was 10.6 in HF and 23.8 in LF respectively.(2) As far as the ratio of OC in given fraction to that in gross sample was concerned,dominance of OC in HF was obvious in the whole soil profile.OC in HF increased from 78.95% to 90.33%,while OC in LF decreased from 21.05% to 9.68% with depths.(3) Soil total OC amounted to 47.47 in YF while 17.63 g.kg-1 in SDL,in which the OC content in HF decreased from 37.31 to 16.01 g.kg-1 while OC content in LF decreased from 10.01 to 1.62 g.kg-1.In other words,results of OC and N content show meadow degradation led to the loss of 57% OC in HF and 84% OC in LF from originally native ecosystem on alpine meadow.In addition,meadow degradation led to the loss of 43% N in HF and 79% N in LF from originally native ecosystem on alpine meadow.(4) The main reason for loss of C and N in LF during meadow degradation was not attributed to the decrease of OC and N concentration in LF and LF,but to the decrease in LF dry weight.Loss of N was far lower than loss of C in HF.This may suggest that there is difference in protection mode of C and N in HF.
基金Supported by the key project of knowledge in-novation programof CAS(No.KZCX1-SW-01-01A)State key basicresearch and development plan(No.2002CB412501)two joint Sino-Japanese project:"Research on the effects of carbon dynamics"and"global warming on temperate highland g rasslands"
基金funded by the grants from Basic Science and Research Special Fund for the State Level and Public Scientific Research Institute (Grassland Research Institute,Chinese Academy of Agricultural Sciences) and Wild Science Observation Testing Station of Alpine Meadow Grassland Resource and Ecotope of the Ministry of Agriculture
文摘[Objective] To investigate the relationship between the grassland caterpillar with different grades and the structure of alpine Kobresia meadow or soil feature. [Method] A total of 10 plots (20.00 m × 20.00 m) were chosen. In each plot, five smaller plots (5.00 m × 5.00 m) were randomly selected and six sample plots (0.25 m × 0.25 m) were then selected in each smaller plot. The biomass, vegetation height, grasslayer thickness, bare land area, soil moisture and total vegetation cover degree were determined. Data were analyzed statistically by Excel 2003 and SPSS 13.0 software. [ Result] There was a significant difference (P 〈 0.05) between the grassland caterpillars at different hazard grades and the structure of alpine Kobresia meadow or soil properties. [ Conclusion] With the increase of grassland caterpillar density, the plant community structure of alpine Kobresia meadows changes from sedge family-dominant community to the forbs-dominant community.