期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
弹簧摆的内共振和混沌运动 被引量:14
1
作者 李银山 树学锋 《太原理工大学学报》 CAS 1998年第6期555-559,共5页
本文讨论二自由度Hamilton系统弹簧摆的运动。应用Melnikov方法判断Smale马蹄映射,并应用Poincare截面的数值计算证实混沌运动存在。
关键词 弹簧摆 内共振 浑沌运动 运动稳定性 哈密顿系统
下载PDF
A kind of symbolic dynamical systems describing non-chaotic maps
2
作者 麦结华 《Chinese Science Bulletin》 SCIE EI CAS 1995年第13期1063-1067,共5页
1 A kind of non-chaotic dynamical systems on the symbolic space Let A<sub>0</sub>=A<sub>1</sub>=A<sub>2</sub>=…={0,1},and X=multiply from i=0 to ∞ A<sub>i</sub>. For e... 1 A kind of non-chaotic dynamical systems on the symbolic space Let A<sub>0</sub>=A<sub>1</sub>=A<sub>2</sub>=…={0,1},and X=multiply from i=0 to ∞ A<sub>i</sub>. For every integer k≥2, define metrics d<sub>k</sub>and d<sub>k</sub>’ on X by d<sub>k</sub>(a,b)=max{k<sup>-i</sup>·|a<sub>i</sub>-b<sub>i</sub>|: i=0, 1, 2,…}, d<sub>k</sub>’(a, b)=sum from i=0 to ∞ k<sup>-i</sup>·|a<sub>i</sub>-b<sub>i</sub>| forany a=(a<sub>0</sub>, a<sub>0</sub>, a<sub>2</sub>,…) and any b=(b<sub>0</sub>, b<sub>1</sub>, b<sub>2</sub>,…)∈X. It is easy to see that all d<sub>k</sub> andd<sub>k</sub>’ induce the same topological structure. Thus we now may only consider d≡d<sub>2</sub>. Thespace (X, d) is usually called a symbolic space. For simplicity, write X for (X, d). It 展开更多
关键词 SYMBOLIC dynamical system chaos almost periodic MAP pseudo-orbit SHADOWING property MAP of interval HOMEOMORPHISM of plane.
原文传递
弱几乎周期点的一点注记
3
作者 姜海景 《数学杂志》 CSCD 1999年第1期56-60,共5页
本文证明了符号空间中存在混沌集S1,S2分别满足S1R(σ)-W(σ)和S2W(σ)-AP(σ),并证明了具有伪轨跟踪性质的紧致度量空间上的连续满射f,以下条件互相等价:1)CR(f)≠R(f)2)R(f)≠W(... 本文证明了符号空间中存在混沌集S1,S2分别满足S1R(σ)-W(σ)和S2W(σ)-AP(σ),并证明了具有伪轨跟踪性质的紧致度量空间上的连续满射f,以下条件互相等价:1)CR(f)≠R(f)2)R(f)≠W(f)3)W(f)≠AP(f) 展开更多
关键词 弱几乎周期点 伪轨跟踪性质 紧致度量空间
下载PDF
Conditions of C0 flows on closed surfaces having the pseudo-orbit tracing property 被引量:1
4
作者 麦结华 顾荣宝 《Science China Mathematics》 SCIE 1997年第11期1166-1175,共0页
Let M be a closed surface,orientable or non-orientable,and let f be a C0 flow on M of which all singular points are isolated.Then f has the pseudo-orbit tracing property if and only if (i) for any x∈M,both the ω-lim... Let M be a closed surface,orientable or non-orientable,and let f be a C0 flow on M of which all singular points are isolated.Then f has the pseudo-orbit tracing property if and only if (i) for any x∈M,both the ω-limit set ω(x) and the α-limit set α(x) of x contain only one orbit; (ii) for any regular point x of f,if ω(x) is not quasi-attracting,then α(x) is quasi-exclusive; (iii) every saddle point of f is strict,and at most 4-forked. 展开更多
关键词 closed surface C0 flow singular POINT periodic orbit almost periodic POINT pseudo-orbit TRACING property.
全文增补中
上一页 1 下一页 到第
使用帮助 返回顶部