In the past two years,significant progresses have been achieved in high-performance cast and wrought magnesium and magnesium alloys,magnesium-based composites,advanced cast technologies,advanced processing technologie...In the past two years,significant progresses have been achieved in high-performance cast and wrought magnesium and magnesium alloys,magnesium-based composites,advanced cast technologies,advanced processing technologies,and functional magnesium materials,such as Mg ion batteries,hydrogen storage Mg materials,bio-magnesium alloys,etc.Great contributions to the development of new magnesium alloys and their processing technologies have been made by Chongqing University,Shanghai Jiaotong University,Chinese Academy of Sciences,Helmholtz Zentrum Geesthacht,Queensland University,Brunel University,etc.This review paper is aimed to summarize the latest important advances in cast magnesium alloys,wrought magnesium alloys and functional magnesium materials worldwide in 2018–2019,including both the development of new materials and the innovation of their processing technologies.Based on the issues and challenges identified here,some future research directions are suggested,including further development of high-performance magnesium alloys having high strength and superior plasticity together with high corrosion resistance and low cost,and fundamental research on the phase diagram,diffusion,precipitation,etc.,as well as the development of advanced welding and joining technology.展开更多
The current research and development of magnesium alloys is summarized. Several aspects of magnesium alloys are described: cast Mg alloy, wrought Mg alloy, and novel processing. The subjects are discussed individuall...The current research and development of magnesium alloys is summarized. Several aspects of magnesium alloys are described: cast Mg alloy, wrought Mg alloy, and novel processing. The subjects are discussed individually and recommendations for further study are listed in the final section.展开更多
The research and development status of casting magnesium alloys including the commercial casting alloys and the new types casting alloys are reviewed,with more attention to microstructure and mechanical properties of ...The research and development status of casting magnesium alloys including the commercial casting alloys and the new types casting alloys are reviewed,with more attention to microstructure and mechanical properties of modified-AZ91,AM60 and WE43 alloys with various additions,and new types of low cost casting alloys and high strength casting alloys.The modification and/or refinement of Mg2 Si phase in Mg-Al-Si based casting alloys by various additions are discussed and new purifying technologies for casting magnesium alloys are introduced to improve the performance.The modified AZ81 alloy with reduced impurities is found to have the tensile strength of 280 ± 6 MPa and elongation of 16% ± 0.7%.The fatigue strength of AZ91 D alloy could be obviously improved by addition of Ce and Nd.The Mg-16Gd-2Ag-0.3Zr alloy exhibits very high tensile and yield strengths(UTS:423 MPa and YS:328 MPa);however,its elongation still needs to be improved.展开更多
As human improve their ability to fabricate materials, alloys have evolved from simple to complex compositions, accordingly improving functions and performances,promoting the advancements of human civilization. In rec...As human improve their ability to fabricate materials, alloys have evolved from simple to complex compositions, accordingly improving functions and performances,promoting the advancements of human civilization. In recent years, high-entropy alloys(HEAs) have attracted tremendous attention in various fields. With multiple principal components, they inherently possess unique microstructures and many impressive properties, such as high strength and hardness, excellent corrosion resistance, thermal stability, fatigue,fracture, and irradiation resistance, in terms of which they overwhelm the traditional alloys. All these properties have endowed HEAs with many promising potential applications.An in-depth understanding of the essence of HEAs is important to further developing numerous HEAs with better properties and performance in the future. In this paper, we review the recent development of HEAs, and summarize their preparation methods, composition design, phase formation and microstructures, various properties, and modeling and simulation calculations. In addition, the future trends and prospects of HEAs are put forward.展开更多
The 7xxx series alloys are heat treatable wrought aluminium alloys based on the Al-Zn-Mg(-Cu) system. They are widely used in high-performance structural aerospace and transportation applications. Apart from composi...The 7xxx series alloys are heat treatable wrought aluminium alloys based on the Al-Zn-Mg(-Cu) system. They are widely used in high-performance structural aerospace and transportation applications. Apart from compositional, casting and thermo-mechanical processing effects, the balance of properties is also significantly influenced by the way in which the materials are heat-treated. This paper describes the effects of homogenisation, solution treatment, quenching and ageing treatments on the evolution of the microstructure and properties of some important medium to high-strength 7xxx alloys. With a focus on recent work at Monash University, where the whole processing route from homogenisation to final ageing has been studied for thick plate products, it is reported how microstructural features such as dispersoids, coarse constituent particles, fine-scale precipitates, grain structure and grain boundary characteristics can be controlled by heat treatment to achieve improved microstructure-property combinations. In particular, the paper presents methods for dissolving unwanted coarse constituent particles by controlled high- temperature treatments, quench sensitivity evaluations based on a systematic study of continuous cooling precipitation behaviour, and ageing investigations of one-, two- and three-step ageing treatments using experimental and modelling approaches, in each case, the effects on both the microstructure and the resulting properties are discussed.展开更多
Research on magnesium alloys continues to attract great attention,with more than 3000 papers on magnesium and magnesium alloys published and indexed in SCI in 2020 alone.The results of bibliometric analyses show that ...Research on magnesium alloys continues to attract great attention,with more than 3000 papers on magnesium and magnesium alloys published and indexed in SCI in 2020 alone.The results of bibliometric analyses show that microstructure control and mechanical properties of Mg alloys are continuously the main research focus,and the corrosion and protection of Mg alloys are still widely concerned.The emerging research hot spots are mainly on functional magnesium materials,such as Mg ion batteries,hydrogen storage Mg materials,and bio-magnesium alloys.Great contributions to the research and development of magnesium alloys in 2020 have been made by Chongqing University,Chinese Academy of Sciences,Central South University,Shanghai Jiaotong University,Northeastern University,Helmholtz Zentrum Geesthacht,etc.The directions for future research are suggested,including:1)the synergistic control of microstructures to achieve high-performance magnesium alloys with concurrent high strength and superior plasticity along with high corrosion resistance and low cost;2)further development of functional magnesium materials such as Mg batteries,hydrogen storage Mg materials,structural-functional materials and bio-magnesium materials;3)studies on the effective corrosion protection and control of degradation rate of magnesium alloys;4)further improvement of advanced processing technology on Mg alloys.展开更多
Higher strength is always the goal pursued by researchers for the structural materials,especially for the lightweight magnesium(Mg)alloys which generally have relatively low strength at present.From this aspect,the pr...Higher strength is always the goal pursued by researchers for the structural materials,especially for the lightweight magnesium(Mg)alloys which generally have relatively low strength at present.From this aspect,the present paper reviews the recent reports of a kind of Mg alloys,i.e.Mg-RE(RE:rare earths,mainly Gd or Y)casting and wrought alloys,which have been able to achieve high strength compared with common or commercial Mg alloys,from the viewpoint and content of the alloy system,alloying constitution,preparation process,tensile strength and each of the main strengthening mechanisms.This review of recent research and developments in high-strength Mg-RE alloys is beneficial for the further design of Mg alloys with higher strength as well as excellent comprehensive performance.展开更多
There is an increasing interest in the development of magnesium alloys both for industrial and biomedical applications. Industrial interest in magnesium alloys is based on strong demand of weight reduction of transpor...There is an increasing interest in the development of magnesium alloys both for industrial and biomedical applications. Industrial interest in magnesium alloys is based on strong demand of weight reduction of transportation vehicles for better fuel efficiency, so higher strength, and better ductility and corrosion resistance are required. Nevertheless, biomedical magnesium alloys require appropriate mechanical properties, suitable degradation rate in physiological environment, and what is most important, biosafety to human body. Rather than simply apply commercial magnesium alloys to biomedical field, new alloys should be designed from the point of view of nutriology and toxicology. This article provides a review of state-of-the-art of magnesium alloy implants and devices for orthopedic, cardiovascular and tissue engineering applications. Advances in new alloy design, novel structure design and surface modification are overviewed. The factors that influence the corrosion behavior of magnesium alloys are discussed and the strategy in the future development of biomedical magnesium alloys is proposed.展开更多
Wrought magnesium alloys attract special interests as lightweight structural material due to their homogeneous microstructure and enhanced mechanical properties compared to as-cast alloys.In this contribution,recent r...Wrought magnesium alloys attract special interests as lightweight structural material due to their homogeneous microstructure and enhanced mechanical properties compared to as-cast alloys.In this contribution,recent research and developments on wrought magnesium alloys are reviewed from the viewpoint of the alloy design,focusing on Mg-Al,Mg-Zn and Mg-rare earth(RE)systems.The effects of different alloying elements on the microstructure and mechanical properties are described considering their strengthening mechanisms,e.g.grain refinement,precipitation and texture hardening effect.Finally,the new alloy design and also the future research of wrought magnesium alloys to improve their mechanical properties are discussed.展开更多
A microstructural model, which was used to predict the evolution of microstructure of Gatorized Waspaloy in the isothermal forging process, was developed in terms of dynamic recrystallization and grain growth. The fol...A microstructural model, which was used to predict the evolution of microstructure of Gatorized Waspaloy in the isothermal forging process, was developed in terms of dynamic recrystallization and grain growth. The following three steps of experiment were conducted during developing the model. (1) Specimens were compressed in the MTS testing machine. (2) Dynamic recrystallization and grain growth were discussed. (3) Dynamic recrystallization model and grain growth model were set up. The simulated results are in good agreement with the experimental data.展开更多
During the past decades,with the increasing demands in lightweight structural materials,Mg alloys with low density and high performance have been extensively investigated and partly applied in some industries.Especial...During the past decades,with the increasing demands in lightweight structural materials,Mg alloys with low density and high performance have been extensively investigated and partly applied in some industries.Especially when rare earth(RE)elements are added as major alloying elements to Mg alloys,the alloy strength and creep resistance are greatly improved,which have promoted several series of Mg-RE alloys.This paper reviews the progress and developments of high-performance Mg-RE alloys in recent years with emphasis on cast alloys.The main contents include the alloy design,melt purification,grain refinement,castability,novel liquid casting and semisolid forming approaches,and the industrial applications or trials made of Mg-RE alloys.The review will provide insights for future developments of new alloys,techniques and applications of Mg alloys.展开更多
China has been developed into one of the most active regions in terms of both fundamental and applied research on magnesium (Mg) and its alloys in the world from a solid base laid by its prominent metallurgist and m...China has been developed into one of the most active regions in terms of both fundamental and applied research on magnesium (Mg) and its alloys in the world from a solid base laid by its prominent metallurgist and materials scientists over the past decades. Nowadays, a large number of young-generation researchers have been inspired by their predecessors and become the key participants in the fields of Mg alloys, which consequently led to the establishment of China Youth Scholar Society for Magnesium Alloys Research in 2015. Since then, the first two China Youth Scholars Symposiums on Mg Alloys Research had been held at Harbin (2015) and Chongqing (2016) China, respectively. A number of crucial research inter- ests related to fundamental and applied Mg research were discussed at the conferences and summarized in this short perspective, aiming to boost far-reaching initiatives for development of new Mg-based materials to satisfy the requirements for a broad range of industrial employments. Herein, four main aspects are included as follows: i) Plastic deformation mechanism and strengthening strategy, ii) Design and development of new Mg-based materials, iii) Key service properties, and iv) New processing technologies.展开更多
Grain refinement could effectively enhance yield strength of Mg alloys according to the well-known Hall-Petch theory. For decades, many studies have been devoted to the factors influencing the Hall- Petch slope (k) ...Grain refinement could effectively enhance yield strength of Mg alloys according to the well-known Hall-Petch theory. For decades, many studies have been devoted to the factors influencing the Hall- Petch slope (k) in Mg alloys. Understanding the factors influencing k and their mechanisms could offer guidance to design and produce high-strength Mg alloys through effective grain refinement hardening. A review and comments of the past work on the factors influencing k in Mg alloys are presented. Results of these previous investigations demonstrate that the value of k in Mg alloys varies with texture, grain size, temperature and stain. The influence of texture and grain size on k is found to be an essential result of the variation of deformation mode on k value. Without the variation of deformation modes, it is revealed that texture could also impose a significant effect on k and this is also summarized and discussed in this paper. The reason for texture effect on k is analyzed based on the mechanism of Hall-Petch relationship. In addition, it is found in face-centered cubic (fcc) or body-centered cubic (bcc) metals that boundary parameters (boundary coherence, boundary energy and boundary diffusivity) could strengthen twinning or slips to a different extent. Therefore, the role of boundary parameters is also extended into the k values in Mg alloys and discussed in this paper. In the end, we discuss the future research perspective of Hall-Petch relationship in Mg alloys.展开更多
The microstructure and mechanical properties of Mg-6Al-1.2Y-0.9Nd magnesium alloy with Sb, Sm, or Sn addition were investigated through X-ray diffraction (XRD), optical microscopy (OM), scanning electron microsco...The microstructure and mechanical properties of Mg-6Al-1.2Y-0.9Nd magnesium alloy with Sb, Sm, or Sn addition were investigated through X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The results show that small amounts of Sb, Sm, and especially Sn can refine the grains of the alloy. High melting point Sb3Y5, Al2Sm, and Nd5Sn3 intermetallic compounds can be formed respectively when Sb, Sm, and Sn are added to the alloy. Sb and Sm can improve the tensile strength of the alloy at ambient and elevated temperatures. The tensile strength of the alloy with Sm addition is the highest at 293 and 423 K. However, the tensile strength of the alloy with Sn addition is the highest at 448 K.展开更多
Titanium alloys are widely used in aeronautics that demand a good combination of high strength, good corrosion resistance and low mass. The mechanical properties lead to challenges in machining operations such as high...Titanium alloys are widely used in aeronautics that demand a good combination of high strength, good corrosion resistance and low mass. The mechanical properties lead to challenges in machining operations such as high process temperature as well as rapidly increasing tool wear. The conventional tool materials are not able to maintain their hardness and other mechanical prop- erties at higher cutting temperatures encountered in high speed machining. In this work, the new material tools, which are poly- crystalline diamond (PCD) and polycrystalline cubic boron nitride (PCBN) tools, are used in high-speed milling of Ti-6.5AI-2Zr-IMo-IV (TA15) alloy. The performance and wear mechanism of the tools are investigated. Compared to PCBN tool, PCD tool has a much longer tool life, especially at higher cutting speeds. Analyses based on the SEM and EDX suggest that attrition, adhesion and diffusion are the main wear mechanisms of PCD and PCBN tools in high-speed milling of TA 15. Oxida- tion wear is also observed at PCBN tool/workpiece interface. Roughness, defects, micro-hardness and microstructure of the ma- chined surface are investigated. The recorded surface roughness values with PCD/PCBN tools are bellow 0.3 μm at initial and steady cutting stage. Micro-hardness analysis shows that the machined surface hardening depth with PCD and PCBN tools is small. There is no evidence of sub-surface defects with PCD and PCBN tools. It is concluded that for TA15 alloy, high-speed milling can be carried out with PCD/PCBN tools.展开更多
基金The content in this review is financially supported by the National Key Research and Development Program of China(No.2016YFB0301100,2017YFF0209100)the National Science Foundation for Scientists of China(No.51531002,51474043,51701027,51971042,51901028)the Chongqing Academician Special Fund(cstc2018jcyj-yszxX0007,cstc2019yszxjcyjX0004).
文摘In the past two years,significant progresses have been achieved in high-performance cast and wrought magnesium and magnesium alloys,magnesium-based composites,advanced cast technologies,advanced processing technologies,and functional magnesium materials,such as Mg ion batteries,hydrogen storage Mg materials,bio-magnesium alloys,etc.Great contributions to the development of new magnesium alloys and their processing technologies have been made by Chongqing University,Shanghai Jiaotong University,Chinese Academy of Sciences,Helmholtz Zentrum Geesthacht,Queensland University,Brunel University,etc.This review paper is aimed to summarize the latest important advances in cast magnesium alloys,wrought magnesium alloys and functional magnesium materials worldwide in 2018–2019,including both the development of new materials and the innovation of their processing technologies.Based on the issues and challenges identified here,some future research directions are suggested,including further development of high-performance magnesium alloys having high strength and superior plasticity together with high corrosion resistance and low cost,and fundamental research on the phase diagram,diffusion,precipitation,etc.,as well as the development of advanced welding and joining technology.
基金the Chinese Foundation Research ProjectionMagnesium Elektron Ltd. and the Manchester Materials Science Center of University of Manchester.
文摘The current research and development of magnesium alloys is summarized. Several aspects of magnesium alloys are described: cast Mg alloy, wrought Mg alloy, and novel processing. The subjects are discussed individually and recommendations for further study are listed in the final section.
基金supported by the National Natural Science Foundation of China(Grant Nos.51531002,51474043 and 51571043)the Ministry of Education of China(SRFDR 20130191110018)+1 种基金Chongqing Municipal Government(CSTC2013JCYJC60001,CEC project,Two River Scholar Project and The Chief Scientist Studio Project)Fundamental Research Funds for the Central Universities(No.106112015CDJZR135515)
文摘The research and development status of casting magnesium alloys including the commercial casting alloys and the new types casting alloys are reviewed,with more attention to microstructure and mechanical properties of modified-AZ91,AM60 and WE43 alloys with various additions,and new types of low cost casting alloys and high strength casting alloys.The modification and/or refinement of Mg2 Si phase in Mg-Al-Si based casting alloys by various additions are discussed and new purifying technologies for casting magnesium alloys are introduced to improve the performance.The modified AZ81 alloy with reduced impurities is found to have the tensile strength of 280 ± 6 MPa and elongation of 16% ± 0.7%.The fatigue strength of AZ91 D alloy could be obviously improved by addition of Ce and Nd.The Mg-16Gd-2Ag-0.3Zr alloy exhibits very high tensile and yield strengths(UTS:423 MPa and YS:328 MPa);however,its elongation still needs to be improved.
基金supported by the National Natural Science Foundation of China (51471025 and 51671020)
文摘As human improve their ability to fabricate materials, alloys have evolved from simple to complex compositions, accordingly improving functions and performances,promoting the advancements of human civilization. In recent years, high-entropy alloys(HEAs) have attracted tremendous attention in various fields. With multiple principal components, they inherently possess unique microstructures and many impressive properties, such as high strength and hardness, excellent corrosion resistance, thermal stability, fatigue,fracture, and irradiation resistance, in terms of which they overwhelm the traditional alloys. All these properties have endowed HEAs with many promising potential applications.An in-depth understanding of the essence of HEAs is important to further developing numerous HEAs with better properties and performance in the future. In this paper, we review the recent development of HEAs, and summarize their preparation methods, composition design, phase formation and microstructures, various properties, and modeling and simulation calculations. In addition, the future trends and prospects of HEAs are put forward.
基金The Aluminium Corporation of China Ltd.(Chalco)for supporting aspects of this work financiallyproviding AA7150 materials as part of the Australia-China International Centre for Light Alloy Research(ICLAR)+1 种基金Monash University for developing the retrogression and reageing Matlab model (as part of the PhD project of Dr Adrian GROSVENOR)The ARC Centre of Excellence for Design in Light Metals and its Directors (first Prof Barry MUDDLE and then Prof Xin-hua WU) for supporting
文摘The 7xxx series alloys are heat treatable wrought aluminium alloys based on the Al-Zn-Mg(-Cu) system. They are widely used in high-performance structural aerospace and transportation applications. Apart from compositional, casting and thermo-mechanical processing effects, the balance of properties is also significantly influenced by the way in which the materials are heat-treated. This paper describes the effects of homogenisation, solution treatment, quenching and ageing treatments on the evolution of the microstructure and properties of some important medium to high-strength 7xxx alloys. With a focus on recent work at Monash University, where the whole processing route from homogenisation to final ageing has been studied for thick plate products, it is reported how microstructural features such as dispersoids, coarse constituent particles, fine-scale precipitates, grain structure and grain boundary characteristics can be controlled by heat treatment to achieve improved microstructure-property combinations. In particular, the paper presents methods for dissolving unwanted coarse constituent particles by controlled high- temperature treatments, quench sensitivity evaluations based on a systematic study of continuous cooling precipitation behaviour, and ageing investigations of one-, two- and three-step ageing treatments using experimental and modelling approaches, in each case, the effects on both the microstructure and the resulting properties are discussed.
基金financially supported by the National Key Research and Development Program of China(Project No.2016YFB0301100&Project No.2016YFB0700403)the Chongqing Academician Special Fund(Project No.cstc2018jcyj-yszx X0007&Project No.cstc2020yszx-jcyj X0001)+1 种基金Chongqing Research Program of Basic Research and Frontier Technology(Project No.cstc2019jcyj-msxm0438)the 111 Project(Project No.B16007)by the Ministry of Education and the State Administration of Foreign Experts Affairs of China。
文摘Research on magnesium alloys continues to attract great attention,with more than 3000 papers on magnesium and magnesium alloys published and indexed in SCI in 2020 alone.The results of bibliometric analyses show that microstructure control and mechanical properties of Mg alloys are continuously the main research focus,and the corrosion and protection of Mg alloys are still widely concerned.The emerging research hot spots are mainly on functional magnesium materials,such as Mg ion batteries,hydrogen storage Mg materials,and bio-magnesium alloys.Great contributions to the research and development of magnesium alloys in 2020 have been made by Chongqing University,Chinese Academy of Sciences,Central South University,Shanghai Jiaotong University,Northeastern University,Helmholtz Zentrum Geesthacht,etc.The directions for future research are suggested,including:1)the synergistic control of microstructures to achieve high-performance magnesium alloys with concurrent high strength and superior plasticity along with high corrosion resistance and low cost;2)further development of functional magnesium materials such as Mg batteries,hydrogen storage Mg materials,structural-functional materials and bio-magnesium materials;3)studies on the effective corrosion protection and control of degradation rate of magnesium alloys;4)further improvement of advanced processing technology on Mg alloys.
基金supported by Natural Science Foundation of Heilongjiang Province of China(E2017030,ZD2017010)National Natural Science Foundation of China(51671063,51771060,51871069)+1 种基金Fundamental Research Funds for the Central Universities(HEUCFM181002)Foundation of State Key Laboratory of Rare Earth Resources Utilization(RERU2018017).
文摘Higher strength is always the goal pursued by researchers for the structural materials,especially for the lightweight magnesium(Mg)alloys which generally have relatively low strength at present.From this aspect,the present paper reviews the recent reports of a kind of Mg alloys,i.e.Mg-RE(RE:rare earths,mainly Gd or Y)casting and wrought alloys,which have been able to achieve high strength compared with common or commercial Mg alloys,from the viewpoint and content of the alloy system,alloying constitution,preparation process,tensile strength and each of the main strengthening mechanisms.This review of recent research and developments in high-strength Mg-RE alloys is beneficial for the further design of Mg alloys with higher strength as well as excellent comprehensive performance.
基金supported by the National Basic Research Program of China(973 Program)(Nos.2012CB619102 and 2012CB619100)the National Science Fund for Distinguished Young Scholars(No.51225101)+4 种基金the National Natural Science Foundation of China(No.31170909)the Research Fund for the Doctoral Program of Higher Education(No.20100001110011) the Natural Science Foundation of Heilongjiang Province(No. ZD201012)the Project for Supervisor of Excellent Doctoral Dissertation of Beijing(No.20121000101)the Guangdong Province Innovation R&D Team Project(No.201001 C0104669453)
文摘There is an increasing interest in the development of magnesium alloys both for industrial and biomedical applications. Industrial interest in magnesium alloys is based on strong demand of weight reduction of transportation vehicles for better fuel efficiency, so higher strength, and better ductility and corrosion resistance are required. Nevertheless, biomedical magnesium alloys require appropriate mechanical properties, suitable degradation rate in physiological environment, and what is most important, biosafety to human body. Rather than simply apply commercial magnesium alloys to biomedical field, new alloys should be designed from the point of view of nutriology and toxicology. This article provides a review of state-of-the-art of magnesium alloy implants and devices for orthopedic, cardiovascular and tissue engineering applications. Advances in new alloy design, novel structure design and surface modification are overviewed. The factors that influence the corrosion behavior of magnesium alloys are discussed and the strategy in the future development of biomedical magnesium alloys is proposed.
文摘Wrought magnesium alloys attract special interests as lightweight structural material due to their homogeneous microstructure and enhanced mechanical properties compared to as-cast alloys.In this contribution,recent research and developments on wrought magnesium alloys are reviewed from the viewpoint of the alloy design,focusing on Mg-Al,Mg-Zn and Mg-rare earth(RE)systems.The effects of different alloying elements on the microstructure and mechanical properties are described considering their strengthening mechanisms,e.g.grain refinement,precipitation and texture hardening effect.Finally,the new alloy design and also the future research of wrought magnesium alloys to improve their mechanical properties are discussed.
文摘A microstructural model, which was used to predict the evolution of microstructure of Gatorized Waspaloy in the isothermal forging process, was developed in terms of dynamic recrystallization and grain growth. The following three steps of experiment were conducted during developing the model. (1) Specimens were compressed in the MTS testing machine. (2) Dynamic recrystallization and grain growth were discussed. (3) Dynamic recrystallization model and grain growth model were set up. The simulated results are in good agreement with the experimental data.
基金This work is supported by the National Natural Science Foundation of China(Grant Nos.51775334,51821001 and 51701124)National Key Research and Development Program of China(Grant No.2016YFB0701205)+3 种基金China Postdoctoral Science Foundation(Grant No.2020M671360)Natural Science Foundation for Young of Jiangsu Province(Grant No.BK20190863)Jiangsu“Mass Innovation and Entrepreneurship”Talent Program(Shuang Chuang Ph.Ds,2018)Open Research Fund of the State Key Laboratory of Metal Matrix Composites(Grant No.sklmmc-kf18-08).
文摘During the past decades,with the increasing demands in lightweight structural materials,Mg alloys with low density and high performance have been extensively investigated and partly applied in some industries.Especially when rare earth(RE)elements are added as major alloying elements to Mg alloys,the alloy strength and creep resistance are greatly improved,which have promoted several series of Mg-RE alloys.This paper reviews the progress and developments of high-performance Mg-RE alloys in recent years with emphasis on cast alloys.The main contents include the alloy design,melt purification,grain refinement,castability,novel liquid casting and semisolid forming approaches,and the industrial applications or trials made of Mg-RE alloys.The review will provide insights for future developments of new alloys,techniques and applications of Mg alloys.
基金support from Chinese Committee for Magnesium and its Application
文摘China has been developed into one of the most active regions in terms of both fundamental and applied research on magnesium (Mg) and its alloys in the world from a solid base laid by its prominent metallurgist and materials scientists over the past decades. Nowadays, a large number of young-generation researchers have been inspired by their predecessors and become the key participants in the fields of Mg alloys, which consequently led to the establishment of China Youth Scholar Society for Magnesium Alloys Research in 2015. Since then, the first two China Youth Scholars Symposiums on Mg Alloys Research had been held at Harbin (2015) and Chongqing (2016) China, respectively. A number of crucial research inter- ests related to fundamental and applied Mg research were discussed at the conferences and summarized in this short perspective, aiming to boost far-reaching initiatives for development of new Mg-based materials to satisfy the requirements for a broad range of industrial employments. Herein, four main aspects are included as follows: i) Plastic deformation mechanism and strengthening strategy, ii) Design and development of new Mg-based materials, iii) Key service properties, and iv) New processing technologies.
基金co-supported by the National Natural Science Foundation of China (Nos. 51571041, 51421001 and 51401190)
文摘Grain refinement could effectively enhance yield strength of Mg alloys according to the well-known Hall-Petch theory. For decades, many studies have been devoted to the factors influencing the Hall- Petch slope (k) in Mg alloys. Understanding the factors influencing k and their mechanisms could offer guidance to design and produce high-strength Mg alloys through effective grain refinement hardening. A review and comments of the past work on the factors influencing k in Mg alloys are presented. Results of these previous investigations demonstrate that the value of k in Mg alloys varies with texture, grain size, temperature and stain. The influence of texture and grain size on k is found to be an essential result of the variation of deformation mode on k value. Without the variation of deformation modes, it is revealed that texture could also impose a significant effect on k and this is also summarized and discussed in this paper. The reason for texture effect on k is analyzed based on the mechanism of Hall-Petch relationship. In addition, it is found in face-centered cubic (fcc) or body-centered cubic (bcc) metals that boundary parameters (boundary coherence, boundary energy and boundary diffusivity) could strengthen twinning or slips to a different extent. Therefore, the role of boundary parameters is also extended into the k values in Mg alloys and discussed in this paper. In the end, we discuss the future research perspective of Hall-Petch relationship in Mg alloys.
文摘The microstructure and mechanical properties of Mg-6Al-1.2Y-0.9Nd magnesium alloy with Sb, Sm, or Sn addition were investigated through X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The results show that small amounts of Sb, Sm, and especially Sn can refine the grains of the alloy. High melting point Sb3Y5, Al2Sm, and Nd5Sn3 intermetallic compounds can be formed respectively when Sb, Sm, and Sn are added to the alloy. Sb and Sm can improve the tensile strength of the alloy at ambient and elevated temperatures. The tensile strength of the alloy with Sm addition is the highest at 293 and 423 K. However, the tensile strength of the alloy with Sn addition is the highest at 448 K.
基金National High-tech Research and Development Program of China (2009AA04Z116)Program for Changjiang Scholars and Innovative Research Team in University ( IRT0837)
文摘Titanium alloys are widely used in aeronautics that demand a good combination of high strength, good corrosion resistance and low mass. The mechanical properties lead to challenges in machining operations such as high process temperature as well as rapidly increasing tool wear. The conventional tool materials are not able to maintain their hardness and other mechanical prop- erties at higher cutting temperatures encountered in high speed machining. In this work, the new material tools, which are poly- crystalline diamond (PCD) and polycrystalline cubic boron nitride (PCBN) tools, are used in high-speed milling of Ti-6.5AI-2Zr-IMo-IV (TA15) alloy. The performance and wear mechanism of the tools are investigated. Compared to PCBN tool, PCD tool has a much longer tool life, especially at higher cutting speeds. Analyses based on the SEM and EDX suggest that attrition, adhesion and diffusion are the main wear mechanisms of PCD and PCBN tools in high-speed milling of TA 15. Oxida- tion wear is also observed at PCBN tool/workpiece interface. Roughness, defects, micro-hardness and microstructure of the ma- chined surface are investigated. The recorded surface roughness values with PCD/PCBN tools are bellow 0.3 μm at initial and steady cutting stage. Micro-hardness analysis shows that the machined surface hardening depth with PCD and PCBN tools is small. There is no evidence of sub-surface defects with PCD and PCBN tools. It is concluded that for TA15 alloy, high-speed milling can be carried out with PCD/PCBN tools.