为了探讨通电时间对镁合金微弧氧化陶瓷层形成和生长过程的影响规律,利用高速相机记录微弧放电状态,采用扫描电子显微镜观察膜层表面形貌,借助电化学测试分析膜层表面阻值,根据电压变化曲线计算能量消耗。结果表明:随微弧氧化时间增加,...为了探讨通电时间对镁合金微弧氧化陶瓷层形成和生长过程的影响规律,利用高速相机记录微弧放电状态,采用扫描电子显微镜观察膜层表面形貌,借助电化学测试分析膜层表面阻值,根据电压变化曲线计算能量消耗。结果表明:随微弧氧化时间增加,镁合金表面微弧放电斑点由边缘逐渐扩展至整个表面,放电强度增大且数量增多;微弧氧化初期,样品表面有含氧元素的不规则颗粒生成,数量逐渐增多,直至起弧瞬间形成孔径小于0.2μm的放电微孔;随微弧氧化时间增加镁合金表面阻值增大,直至3.1×104Ω时出现明显微弧放电现象;镁合金微弧氧化各时间段所消耗能量逐渐升高,陶瓷层生长阶段能量消耗54.62 k J明显高于起弧阶段的7.98 k J。展开更多
Micro-arc oxidation(MAO)coatings were fabricated on AZ31 magnesium alloy and the effect of Na2CO3 on the energy consumption was studied.The results show that the concentration of Na2CO3 has a critical effect on the di...Micro-arc oxidation(MAO)coatings were fabricated on AZ31 magnesium alloy and the effect of Na2CO3 on the energy consumption was studied.The results show that the concentration of Na2CO3 has a critical effect on the discharge behavior of MAO process.With increasing the Na2CO3 concentration in the electrolyte,the arcing voltage and working voltage decrease.A proper concentration is needed to achieve the highest growth rate of the coatings and the lowest energy consumption per unit coating volume.The addition of Na2CO3 decreases the arcing and working voltage of MAO discharge.It is attributed to that the Na2CO3 leads to much more micropores due to the decomposition of MgCO3 to produce more gas.展开更多
Electrochemical studies on silicon deposition were performed in molten salt electrolytes. Purification of metallurgical grade silicon by electrorefining was carried out in molten Si-chloride salts at temperatures from...Electrochemical studies on silicon deposition were performed in molten salt electrolytes. Purification of metallurgical grade silicon by electrorefining was carried out in molten Si-chloride salts at temperatures from 973 K to 1223 K. It was found that the use of a liquid alloy anode of silicon and copper was beneficial in molten CaCl2 with NaCl, CaO and dissolved Si. ICP-AES analysis results showed efficient removal of metal impurities, such as titanium, aluminum and iron, which are present in significant quantities in the feedstock. The contents of boron and phosphorus in the silicon after electrorefining were reduced from 36×10-6 and 25×10-6 to 4.6×10-6 and 2.8 ×10-6, respectively. The energy consumption of electrorefining was estimated to be about 9.3 kW?h/kg.展开更多
文摘为了探讨通电时间对镁合金微弧氧化陶瓷层形成和生长过程的影响规律,利用高速相机记录微弧放电状态,采用扫描电子显微镜观察膜层表面形貌,借助电化学测试分析膜层表面阻值,根据电压变化曲线计算能量消耗。结果表明:随微弧氧化时间增加,镁合金表面微弧放电斑点由边缘逐渐扩展至整个表面,放电强度增大且数量增多;微弧氧化初期,样品表面有含氧元素的不规则颗粒生成,数量逐渐增多,直至起弧瞬间形成孔径小于0.2μm的放电微孔;随微弧氧化时间增加镁合金表面阻值增大,直至3.1×104Ω时出现明显微弧放电现象;镁合金微弧氧化各时间段所消耗能量逐渐升高,陶瓷层生长阶段能量消耗54.62 k J明显高于起弧阶段的7.98 k J。
文摘Micro-arc oxidation(MAO)coatings were fabricated on AZ31 magnesium alloy and the effect of Na2CO3 on the energy consumption was studied.The results show that the concentration of Na2CO3 has a critical effect on the discharge behavior of MAO process.With increasing the Na2CO3 concentration in the electrolyte,the arcing voltage and working voltage decrease.A proper concentration is needed to achieve the highest growth rate of the coatings and the lowest energy consumption per unit coating volume.The addition of Na2CO3 decreases the arcing and working voltage of MAO discharge.It is attributed to that the Na2CO3 leads to much more micropores due to the decomposition of MgCO3 to produce more gas.
基金Project (2007J0012) supported by the Natural Science Foundation of Fujian Province, ChinaProject (019811) supported by Foxy in the 6th Framework Program, European Commission
文摘Electrochemical studies on silicon deposition were performed in molten salt electrolytes. Purification of metallurgical grade silicon by electrorefining was carried out in molten Si-chloride salts at temperatures from 973 K to 1223 K. It was found that the use of a liquid alloy anode of silicon and copper was beneficial in molten CaCl2 with NaCl, CaO and dissolved Si. ICP-AES analysis results showed efficient removal of metal impurities, such as titanium, aluminum and iron, which are present in significant quantities in the feedstock. The contents of boron and phosphorus in the silicon after electrorefining were reduced from 36×10-6 and 25×10-6 to 4.6×10-6 and 2.8 ×10-6, respectively. The energy consumption of electrorefining was estimated to be about 9.3 kW?h/kg.