Wide-bandgap(WBG)perovskite solar cells(PSCs)play a fundamental role in perovskite-based tandem solar cells.However,the efficiency of WBG PSCs is limited by significant open-circuit voltage losses,which are primarily ...Wide-bandgap(WBG)perovskite solar cells(PSCs)play a fundamental role in perovskite-based tandem solar cells.However,the efficiency of WBG PSCs is limited by significant open-circuit voltage losses,which are primarily caused by surface defects.In this study,we present a novel method for modifying surfaces using the multifunctional S-ethylisothiourea hydrobromide(SEBr),which can passivate both Pb^(-1)and FA^(-1)terminated surfaces,Moreover,the SEBr upshifted the Fermi level at the perovskite interface,thereby promoting carrier collection.This proposed method was effective for both 1.67 and 1.77 eV WBG PSCs,achieving power conversion efficiencies(PCEs)of 22.47%and 19.90%,respectively,with V_(OC)values of 1.28 and 1.33 V,along with improved film and device stability.With this advancement,we were able to fabricate monolithic all-perovskite tandem solar cells with a champion PCE of 27.10%,This research offers valuable insights for passivating the surface trap states of WBG perovskite through rational multifunctional molecular engineering.展开更多
Wide-bandgap(>1.7 eV)perovskites suffer from severe light-induced phase segregation due to high bromine content,causing irreversible damage to devices stability.However,the strategies of suppressing photoinduced ph...Wide-bandgap(>1.7 eV)perovskites suffer from severe light-induced phase segregation due to high bromine content,causing irreversible damage to devices stability.However,the strategies of suppressing photoinduced phase segregation and related mechanisms have not been fully disclosed.Here,we report a new passivation agent 4-aminotetrahydrothiopyran hydrochloride(4-ATpHCl)with multifunctional groups for the interface treatment of a 1.77-eV wide-bandgap perovskite film.4-ATpH^(+)impeded halogen ion migration by anchoring on the perovskite surface,leading to the inhibition of phase segregation and thus the passivation of defects,which is ascribed to the interaction of 4-ATpH^(+)with perovskite and the formation of low-dimensional perovskites.Finally,the champion device achieved an efficiency of 19.32%with an open-circuit voltage(V_(OC))of 1.314 V and a fill factor of 83.32%.Moreover,4-ATpHCl modified device exhibited significant improved stability as compared with control one.The target device maintained 80%of its initial efficiency after 519 h of maximum power output(MPP)tracking under 1 sun illumination,however,the control device showed a rapid decrease in efficiency after 267 h.Finally,an efficiency of 27.38%of the champion 4-terminal all-perovskite tandem solar cell was achieved by mechanically stacking this wide-bandgap top subcell with a 1.25-eV low-bandgap perovskite bottom subcell.展开更多
Perovskite solar cells(PSCs)have gained increasing attention due to their excellent photovoltaic performance,achieving certified power conversion efficiency(PCE)of 25.2%.To further enhance PCE and break the Shockley-Q...Perovskite solar cells(PSCs)have gained increasing attention due to their excellent photovoltaic performance,achieving certified power conversion efficiency(PCE)of 25.2%.To further enhance PCE and break the Shockley-Queisser limit of the single junction PSCs,great efforts have been made in tandem solar cells based on perovskite,including perovskite/Si,and perovskite/perovskite(all-perovskite).Among them,all-perovskite tandem solar cells exhibit unique advantages of both lowcost fabrication and high efficiency.They have advanced rapidly in these years,due to the realization of stable and efficient narrow-bandgap perovskites.In this work,we review the development of monolithic all-perovskite tandem solar cells and highlight the critical role of narrow-bandgap perovskites in recent progress of all-perovskite solar cells.We also propose our perspective of future directions on this subject.展开更多
According to the good charge transporting property of perovskite, we design and simulate a p–i–n-type all-perovskite solar cell by using one-dimensional device simulator. The perovskite charge transporting layers an...According to the good charge transporting property of perovskite, we design and simulate a p–i–n-type all-perovskite solar cell by using one-dimensional device simulator. The perovskite charge transporting layers and the perovskite absorber constitute the all-perovskite cell. By modulating the cell parameters, such as layer thickness values, doping concentrations and energy bands of n-, i-, and p-type perovskite layers, the all-perovskite solar cell obtains a high power conversion efficiency of 25.84%. The band matched cell shows appreciably improved performance with widen absorption spectrum and lowered recombination rate, so weobtain a high J_(sc) of 32.47 m A/cm^2. The small series resistance of the all-perovskite solar cell also benefits the high J_(sc). The simulation provides a novel thought of designing perovskite solar cells with simple producing process, low production cost and high efficient structure to solve the energy problem.展开更多
Organic–inorganic halide perovskites have received widespread attention thanks to their strong light absorption,long carrier diffusion lengths,tunable bandgaps,and low temperature processing.Single-junction perovskit...Organic–inorganic halide perovskites have received widespread attention thanks to their strong light absorption,long carrier diffusion lengths,tunable bandgaps,and low temperature processing.Single-junction perovskite solar cells(PSCs)have achieved a boost of the power conversion efficiency(PCE)from 3.8%to 25.2%in just a decade.With the continuous growth of PCE in single-junction PSCs,exploiting of monolithic all-perovskite tandem solar cells is now an important strategy to go beyond the efficiency available in single-junction PSCs.In this review,we first introduce the structure and operation mechanism of monolithic all-perovskite tandem solar cell.We then summarize recent progress in monolithic all-perovskite tandem solar cells from the perspectives of different structural units in the device:tunnel recombination junction,wide-bandgap top subcell,and narrow-bandgap bottom subcell.Finally,we provide our insights into the challenges and scientific issues remaining in this rapidly developing research field.展开更多
Bifacial monolithic all-perovskite tandem solar cells have the promise of delivering higher output power density by inheriting the advantages of both tandem and bifacial architectures simultaneously.Herein,we demonstr...Bifacial monolithic all-perovskite tandem solar cells have the promise of delivering higher output power density by inheriting the advantages of both tandem and bifacial architectures simultaneously.Herein,we demonstrate,for the first time,the bifacial monolithic all-perovskite tandem solar cells and reveal their output power potential.The bifacial tandems are realized by replacing the rear metal electrodes of monofacial tandems with transparent conduction oxide electrodes.Bandgap engineering is deployed to achieve current matching under various rear illumination conditions.The bifacial tandems show a high output power density of 28.51 mW cm−2 under a realistic rear illumination(30 mW cm−2).Further energy yield calculation shows substantial energy yield gain for bifacial tandems compared with the monofacial tandems under various ground albedo for different climatic conditions.This work provides a new device architecture for higher output power for all-perovskite tandem solar cells under real-world conditions.展开更多
The power conversion efficiency(PCE)of single-junction perovskite solar cells(PSCs)has rapidly boosted to 25.2%[1],approaching the Shockley-Queisser limit.A potential strategy to further elevate the PCE of single-junc...The power conversion efficiency(PCE)of single-junction perovskite solar cells(PSCs)has rapidly boosted to 25.2%[1],approaching the Shockley-Queisser limit.A potential strategy to further elevate the PCE of single-junction PSCs is to fabricate all-perovskite tandem solar cells[2,3],which is composed of a wide-bandgap(1.7–1.9 eV)top sub-cell and a low-bandgap(0.9–1.2 eV)bottom sub-cell.展开更多
基金financially supported by the National Natural Science Foundation of China(52330004)the Fundamental Research Funds for the Central Universities(WUT:2023IVA075 and 2023IVB009)+3 种基金the financial support from RISE project Grant(Q-CDBK)Start-up Fund for RAPs under the Strategic Hiring Scheme(PoluU)(1-BD1H)PRI Strategic Grant(1-CD7X)RI-iWEAR Strategic Supporting Scheme(1-CD94)。
文摘Wide-bandgap(WBG)perovskite solar cells(PSCs)play a fundamental role in perovskite-based tandem solar cells.However,the efficiency of WBG PSCs is limited by significant open-circuit voltage losses,which are primarily caused by surface defects.In this study,we present a novel method for modifying surfaces using the multifunctional S-ethylisothiourea hydrobromide(SEBr),which can passivate both Pb^(-1)and FA^(-1)terminated surfaces,Moreover,the SEBr upshifted the Fermi level at the perovskite interface,thereby promoting carrier collection.This proposed method was effective for both 1.67 and 1.77 eV WBG PSCs,achieving power conversion efficiencies(PCEs)of 22.47%and 19.90%,respectively,with V_(OC)values of 1.28 and 1.33 V,along with improved film and device stability.With this advancement,we were able to fabricate monolithic all-perovskite tandem solar cells with a champion PCE of 27.10%,This research offers valuable insights for passivating the surface trap states of WBG perovskite through rational multifunctional molecular engineering.
基金financially supported by the National Key R&D Program of China (2022YFB4200304)the National Natural Science Foundation of China (52303347)+3 种基金the Fundamental Research Funds for the Central Universities (YJ2021157)the Engineering Featured Team Fund of Sichuan University (2020SCUNG102)open foundation of Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University (2022GXYSOF05)the support from the National Natural Science Foundation of China (E30853YM19)
文摘Wide-bandgap(>1.7 eV)perovskites suffer from severe light-induced phase segregation due to high bromine content,causing irreversible damage to devices stability.However,the strategies of suppressing photoinduced phase segregation and related mechanisms have not been fully disclosed.Here,we report a new passivation agent 4-aminotetrahydrothiopyran hydrochloride(4-ATpHCl)with multifunctional groups for the interface treatment of a 1.77-eV wide-bandgap perovskite film.4-ATpH^(+)impeded halogen ion migration by anchoring on the perovskite surface,leading to the inhibition of phase segregation and thus the passivation of defects,which is ascribed to the interaction of 4-ATpH^(+)with perovskite and the formation of low-dimensional perovskites.Finally,the champion device achieved an efficiency of 19.32%with an open-circuit voltage(V_(OC))of 1.314 V and a fill factor of 83.32%.Moreover,4-ATpHCl modified device exhibited significant improved stability as compared with control one.The target device maintained 80%of its initial efficiency after 519 h of maximum power output(MPP)tracking under 1 sun illumination,however,the control device showed a rapid decrease in efficiency after 267 h.Finally,an efficiency of 27.38%of the champion 4-terminal all-perovskite tandem solar cell was achieved by mechanically stacking this wide-bandgap top subcell with a 1.25-eV low-bandgap perovskite bottom subcell.
基金the National Natural Science Foundation of China(11834011,11674219,11574199)。
文摘Perovskite solar cells(PSCs)have gained increasing attention due to their excellent photovoltaic performance,achieving certified power conversion efficiency(PCE)of 25.2%.To further enhance PCE and break the Shockley-Queisser limit of the single junction PSCs,great efforts have been made in tandem solar cells based on perovskite,including perovskite/Si,and perovskite/perovskite(all-perovskite).Among them,all-perovskite tandem solar cells exhibit unique advantages of both lowcost fabrication and high efficiency.They have advanced rapidly in these years,due to the realization of stable and efficient narrow-bandgap perovskites.In this work,we review the development of monolithic all-perovskite tandem solar cells and highlight the critical role of narrow-bandgap perovskites in recent progress of all-perovskite solar cells.We also propose our perspective of future directions on this subject.
基金Project supported by the Graduate Student Education Teaching Reform Project,China(Grant No.JG201512)the Young Teachers Research Project of Yanshan University,China(Grant No.13LGB028)
文摘According to the good charge transporting property of perovskite, we design and simulate a p–i–n-type all-perovskite solar cell by using one-dimensional device simulator. The perovskite charge transporting layers and the perovskite absorber constitute the all-perovskite cell. By modulating the cell parameters, such as layer thickness values, doping concentrations and energy bands of n-, i-, and p-type perovskite layers, the all-perovskite solar cell obtains a high power conversion efficiency of 25.84%. The band matched cell shows appreciably improved performance with widen absorption spectrum and lowered recombination rate, so weobtain a high J_(sc) of 32.47 m A/cm^2. The small series resistance of the all-perovskite solar cell also benefits the high J_(sc). The simulation provides a novel thought of designing perovskite solar cells with simple producing process, low production cost and high efficient structure to solve the energy problem.
基金financially supported by the National Key R&D Program of China(2018YFB1500102)National Natural Science Foundation of China(61974063)+2 种基金Natural Science Foundation of Jiangsu Province(BK20190315,BZ2018008)Program for Innovative Talents and Entrepreneur in JiangsuThousand Talent Program for Young Outstanding Scientists in China.
文摘Organic–inorganic halide perovskites have received widespread attention thanks to their strong light absorption,long carrier diffusion lengths,tunable bandgaps,and low temperature processing.Single-junction perovskite solar cells(PSCs)have achieved a boost of the power conversion efficiency(PCE)from 3.8%to 25.2%in just a decade.With the continuous growth of PCE in single-junction PSCs,exploiting of monolithic all-perovskite tandem solar cells is now an important strategy to go beyond the efficiency available in single-junction PSCs.In this review,we first introduce the structure and operation mechanism of monolithic all-perovskite tandem solar cell.We then summarize recent progress in monolithic all-perovskite tandem solar cells from the perspectives of different structural units in the device:tunnel recombination junction,wide-bandgap top subcell,and narrow-bandgap bottom subcell.Finally,we provide our insights into the challenges and scientific issues remaining in this rapidly developing research field.
基金National Key R&D Program of China(2018YFB1500102)National Natural Science Foundation of China(61974063,U21A2076)+3 种基金Natural Science Foundation of Jiangsu Province(BK20202008,BK20190315)Fundamental Research Funds for the Central Universities(0213/14380206,0205/14380252)Frontiers Science Center for Critical Earth Material Cycling Fund(DLTD2109)Program for Innovative Talents and Entrepreneur in Jiangsu。
文摘Bifacial monolithic all-perovskite tandem solar cells have the promise of delivering higher output power density by inheriting the advantages of both tandem and bifacial architectures simultaneously.Herein,we demonstrate,for the first time,the bifacial monolithic all-perovskite tandem solar cells and reveal their output power potential.The bifacial tandems are realized by replacing the rear metal electrodes of monofacial tandems with transparent conduction oxide electrodes.Bandgap engineering is deployed to achieve current matching under various rear illumination conditions.The bifacial tandems show a high output power density of 28.51 mW cm−2 under a realistic rear illumination(30 mW cm−2).Further energy yield calculation shows substantial energy yield gain for bifacial tandems compared with the monofacial tandems under various ground albedo for different climatic conditions.This work provides a new device architecture for higher output power for all-perovskite tandem solar cells under real-world conditions.
文摘The power conversion efficiency(PCE)of single-junction perovskite solar cells(PSCs)has rapidly boosted to 25.2%[1],approaching the Shockley-Queisser limit.A potential strategy to further elevate the PCE of single-junction PSCs is to fabricate all-perovskite tandem solar cells[2,3],which is composed of a wide-bandgap(1.7–1.9 eV)top sub-cell and a low-bandgap(0.9–1.2 eV)bottom sub-cell.
文摘通过CdBr_(2)对全无机CsPbBr_(3)钙钛矿薄膜进行钝化处理,研究不同浓度CdBr_(2)的异丙醇溶液对全无机CsPbBr_(3)钙钛矿太阳能电池光电性能的影响.结果表明:CdBr_(2)钝化CsPbBr_(3)钙钛矿表面后,降低了钙钛矿表面的Br空位缺陷密度,抑制了非辐射复合,促进了光生电子和空穴的抽取和传输,因此降低了界面光电子复合损失,使全无机钙钛矿太阳能电池器件的光电转换效率从6.58%提高到8.19%,开路电压从1.368 V提高到1.531 V.