High-performance electrocatalysts for water splitting at all pH values have attracted considerable interest in the field of sustainable hydrogen evolution. Herein, we report an efficient electrocatalyst with a nanocry...High-performance electrocatalysts for water splitting at all pH values have attracted considerable interest in the field of sustainable hydrogen evolution. Herein, we report an efficient electrocatalyst with a nanocrystalline cobalt phosphide (COP) network for water splitting in the pH range of 0-14. The novel flexible electrocatalyst is derived from a desirable nanocrystalline CoP network grown on a conductive Hastelloy belt. This kind of self-supported CoP network is directly used as an electrocatalytic cathode for hydrogen evolution. The nanocrystalline network structure results in superior performance with a low onset overpotential of N45 mV over a broad pH range of 0 to 14 and affords a catalytic current density of 100 mA-cm 2 even in neutral media. The CoP network exhibits excellent catalytic properties not only at extreme pH values (0 and 14) but also in neutral media (pH = 7), which is comparable to the behavior of state-of-the-art platinum-based metals. The system exhibits an excellent flexible property and maintains remarkable catalytic stability during continuous 100-h-long electrolysis even after 100 cycles of bending/extending from 100° to 250°.展开更多
A low-cost,highly efficient and strong durable bifunctional electrocatalyst is crucial for electrochemical overall water splitting.In this paper,a self-templated strategy combined with in-situ phosphorization is appli...A low-cost,highly efficient and strong durable bifunctional electrocatalyst is crucial for electrochemical overall water splitting.In this paper,a self-templated strategy combined with in-situ phosphorization is applied to construct hollow structured bimetallic cobalt-nickel phosphide(CoNiP_(x))nanocages.Owing to their unique hollow structure and bimetallic synergistic effects,the as-synthesized CoNiP_(x)hollow nanocages exhibit a high electrocatalytic activity and stability towards hydrogen evolution reaction in all-pH electrolyte and a remarkable electrochemical performance for oxygen evolution reaction in 1.0 mol L^(-1)KOH.Meanwhile,with the bifunctional electrocatalyst in both anode and cathode for overall water splitting,a low voltage of 1.61 V and superior stability are achieved at a current density of 20 mA cm^(-2).展开更多
研发长效稳定、pH适应性强的析氢反应(HER)催化剂对实现大规模制氢具有重要意义.界面工程是研发高效HER催化剂的有效策略之一.本文成功构建了海胆状异质结构催化剂CoTe-CoP/NF.CoTe和CoP的协同作用不仅优化了电子结构、暴露了更多的活...研发长效稳定、pH适应性强的析氢反应(HER)催化剂对实现大规模制氢具有重要意义.界面工程是研发高效HER催化剂的有效策略之一.本文成功构建了海胆状异质结构催化剂CoTe-CoP/NF.CoTe和CoP的协同作用不仅优化了电子结构、暴露了更多的活性位点,而且有效地提高了催化剂的亲水性和疏气性.密度泛函理论计算表明:CoTe与CoP之间的相互作用有效地降低了水的解离能垒,同时增强了对H~*的吸附.这些结果使得CoTe-CoP/NF在整个pH范围内具有优异的HER性能和催化稳定性.在酸性、碱性和中性介质中,CoTe-CoP/NF电极驱动10 mA cm^(-2)的电流密度仅需51、53和75 mV的过电位.总之,本工作为在全pH范围内构建高性能HER催化剂提供了一种界面工程新策略.展开更多
The development of highly active and cost-effective hydrogen evolution reaction (HER) catalysts is of vital importance to addressing global energy issues. Here, a three-dimensional interconnected porous carbon nanof...The development of highly active and cost-effective hydrogen evolution reaction (HER) catalysts is of vital importance to addressing global energy issues. Here, a three-dimensional interconnected porous carbon nanofiber (PCNF) membrane has been developed and utilized as a support for active cobalt phosphide (COP) nanoparticles. This rationally designed self-supported HER catalyst has a lotus root-like multichannel structure, which provides several intrinsic advantages over conventional CNFs. The longitudinal channels can store the electrolyte and ensure fast ion and mass transport within the catalysts. Additionally, mesopores on the outer and inner carbon walls enhance ion and mass migration of the electrolyte to HER active CoP nanoparticles, thus shortening the ion transport distance and increasing the contact area between the electrolyte and the CoP nanoparticles. Moreover, the conductive carbon substrate provides fast electron transfer pathways by forming an integrated conductive network, which further ensures fast HER kinetics. As a result, the CoP/PCNF composites exhibit low onset-potentials (-20, -91, and -84 mV in 0.5 M H2SO4, 1 M PBS, and 1 M KOH, respectively). These findings show that CoP/PCNF composites are promising self-supporting and high-performance all-pH range HER catalysts.展开更多
With their excellent safety, affordability, environmental friendliness and high ionic conductivity, aqueous batteries are prospective contenders to replace lithium-ion batteries. However, the pH of aqueous electrolyte...With their excellent safety, affordability, environmental friendliness and high ionic conductivity, aqueous batteries are prospective contenders to replace lithium-ion batteries. However, the pH of aqueous electrolyte might impact the battery’s electrochemical performance and even its normal operation. It is critical to develop an electrode that can work in different pH settings. The hydrothermal method and vulcanization treatment were used to successfully create copper sulfide(CuS) nanosheet in this work. It can store and transport nonmetal and metal ions as well as polyvalent ions with a high charge radius ratio, and function normally under a variety of pH conditions. The CuS electrode has a considerable capacity(900 mA·h/g) and rate performance under alkaline conditions, as well as an ultra-long discharge platform, which contribute to 80% of the total capacity.展开更多
基金We gratefully acknowledge the support from the National Basic Research Program of China (No. 2015CB358600), National Natural Science Foundation of China (No. 21527805), the Excellent Young Scholar Fund from National Natural Science Foundation of China (No. 21422103), Jiangsu Fund for Distinguished Young Scientist (No. BK20140010), the Natural Science Foundation of Jiangsu Province (No. BK20151228),the Natural Science Foundation in High Education of Jiangsu Province (No. 16KJB430024), and Specialized Research Fund for the Doctoral Program of Higher Education (No. 20133201120028).
文摘High-performance electrocatalysts for water splitting at all pH values have attracted considerable interest in the field of sustainable hydrogen evolution. Herein, we report an efficient electrocatalyst with a nanocrystalline cobalt phosphide (COP) network for water splitting in the pH range of 0-14. The novel flexible electrocatalyst is derived from a desirable nanocrystalline CoP network grown on a conductive Hastelloy belt. This kind of self-supported CoP network is directly used as an electrocatalytic cathode for hydrogen evolution. The nanocrystalline network structure results in superior performance with a low onset overpotential of N45 mV over a broad pH range of 0 to 14 and affords a catalytic current density of 100 mA-cm 2 even in neutral media. The CoP network exhibits excellent catalytic properties not only at extreme pH values (0 and 14) but also in neutral media (pH = 7), which is comparable to the behavior of state-of-the-art platinum-based metals. The system exhibits an excellent flexible property and maintains remarkable catalytic stability during continuous 100-h-long electrolysis even after 100 cycles of bending/extending from 100° to 250°.
基金the National Key R&D Program of China(2017YFA 0208300 and 0700104)the National Natural Science Foundation of China(21671180)the State Key Laboratory of Organic Inorganic Composites(oic-201801007)。
文摘A low-cost,highly efficient and strong durable bifunctional electrocatalyst is crucial for electrochemical overall water splitting.In this paper,a self-templated strategy combined with in-situ phosphorization is applied to construct hollow structured bimetallic cobalt-nickel phosphide(CoNiP_(x))nanocages.Owing to their unique hollow structure and bimetallic synergistic effects,the as-synthesized CoNiP_(x)hollow nanocages exhibit a high electrocatalytic activity and stability towards hydrogen evolution reaction in all-pH electrolyte and a remarkable electrochemical performance for oxygen evolution reaction in 1.0 mol L^(-1)KOH.Meanwhile,with the bifunctional electrocatalyst in both anode and cathode for overall water splitting,a low voltage of 1.61 V and superior stability are achieved at a current density of 20 mA cm^(-2).
基金supported by Outstanding Talent Fund from Beijing University of Chemical Technology。
文摘研发长效稳定、pH适应性强的析氢反应(HER)催化剂对实现大规模制氢具有重要意义.界面工程是研发高效HER催化剂的有效策略之一.本文成功构建了海胆状异质结构催化剂CoTe-CoP/NF.CoTe和CoP的协同作用不仅优化了电子结构、暴露了更多的活性位点,而且有效地提高了催化剂的亲水性和疏气性.密度泛函理论计算表明:CoTe与CoP之间的相互作用有效地降低了水的解离能垒,同时增强了对H~*的吸附.这些结果使得CoTe-CoP/NF在整个pH范围内具有优异的HER性能和催化稳定性.在酸性、碱性和中性介质中,CoTe-CoP/NF电极驱动10 mA cm^(-2)的电流密度仅需51、53和75 mV的过电位.总之,本工作为在全pH范围内构建高性能HER催化剂提供了一种界面工程新策略.
基金The authors are grateful for the financial support from the National Natural Science Foundation of China (Nos. 51433001 and 51373037), the Program of Shanghai Academic Research Leader (No. 17XD1400100).
文摘The development of highly active and cost-effective hydrogen evolution reaction (HER) catalysts is of vital importance to addressing global energy issues. Here, a three-dimensional interconnected porous carbon nanofiber (PCNF) membrane has been developed and utilized as a support for active cobalt phosphide (COP) nanoparticles. This rationally designed self-supported HER catalyst has a lotus root-like multichannel structure, which provides several intrinsic advantages over conventional CNFs. The longitudinal channels can store the electrolyte and ensure fast ion and mass transport within the catalysts. Additionally, mesopores on the outer and inner carbon walls enhance ion and mass migration of the electrolyte to HER active CoP nanoparticles, thus shortening the ion transport distance and increasing the contact area between the electrolyte and the CoP nanoparticles. Moreover, the conductive carbon substrate provides fast electron transfer pathways by forming an integrated conductive network, which further ensures fast HER kinetics. As a result, the CoP/PCNF composites exhibit low onset-potentials (-20, -91, and -84 mV in 0.5 M H2SO4, 1 M PBS, and 1 M KOH, respectively). These findings show that CoP/PCNF composites are promising self-supporting and high-performance all-pH range HER catalysts.
基金Sponsored by the Natural Science Foundation of Guangdong Province for Distinguished Young Scholars (Grant No.2018B030306022)the Project of International Science and Technology Cooperation in Guangdong Province (Grant No.2020A0505100016)the Shenzhen Sauvage Nobel Laureate Laboratory for Smart Materials,and Shenzhen Science and Technology Program (Grant No.KQTD20200820113045083)。
文摘With their excellent safety, affordability, environmental friendliness and high ionic conductivity, aqueous batteries are prospective contenders to replace lithium-ion batteries. However, the pH of aqueous electrolyte might impact the battery’s electrochemical performance and even its normal operation. It is critical to develop an electrode that can work in different pH settings. The hydrothermal method and vulcanization treatment were used to successfully create copper sulfide(CuS) nanosheet in this work. It can store and transport nonmetal and metal ions as well as polyvalent ions with a high charge radius ratio, and function normally under a variety of pH conditions. The CuS electrode has a considerable capacity(900 mA·h/g) and rate performance under alkaline conditions, as well as an ultra-long discharge platform, which contribute to 80% of the total capacity.