Utilization of the body’s regenerative potential for tissue repair is known as in situ tissue regeneration.However,the use of exogenous growth factors requires delicate control of the dose and delivery strategies and...Utilization of the body’s regenerative potential for tissue repair is known as in situ tissue regeneration.However,the use of exogenous growth factors requires delicate control of the dose and delivery strategies and may be accompanied by safety,efficacy and cost concerns.In this study,we developed,for the first time,a biomaterial-based strategy to activate endogenous transforming growth factor beta 1(TGFβ1)under alkaline conditions for effective in situ tissue regeneration.We demonstrated that alkaline-activated TGFβ1 from blood serum,bone marrow fluids and soaking solutions of meniscus and tooth dentin was capable of increasing cell recruitment and early differentiation,implying its broad practicability.Furthermore,we engineered an injectable hydrogel(MS-Gel)consisting of gelatin microspheres for loading strong alkaline substances and a modified gelatin matrix for hydrogel click crosslinking.In vitro models showed that alkaline MS-Gel controllably and sustainably activated endogenous TGFβ1 from tooth dentin for robust bone marrow stem cell migration.More importantly,infusion of in vivo porcine prepared root canals with alkaline MS-Gel promoted significant pulp-dentin regeneration with neurovascular stroma and mineralized tissue by endogenous proliferative cells.Therefore,this work offers a new bench-to-beside translation strategy using biomaterial-activated endogenous biomolecules to achieve in situ tissue regeneration without the need for cell or protein delivery.展开更多
Objective:The activity of enzymes participating in the systems of antioxidant protection was assayed in the peel and pulp of sunflower.The essential roles of proteases in food stimulate research to find other sources ...Objective:The activity of enzymes participating in the systems of antioxidant protection was assayed in the peel and pulp of sunflower.The essential roles of proteases in food stimulate research to find other sources of the enzyme especially from non-conventional sources.In the present work,we study several biochemical parameters in the pulp and peel of sunflower.Methods:Pulp and peel of sunflower was extracted,antioxidant enzymes and nonenzymatic antioxidant were measured.Alkaline protease was measured and purified from pulp in sunflower.Results:High carbohydrate concentration,beta-carotene,catalase and ascorbate peroxidase activities,free radical scavenging capacity and free flavonoid content were observed in the peel of sunflower.Whereas,MDA and ceruloplasmin activities were high in the pulp of sunflower.Conclusions:The present study concluded that peel in sunflower are strong radical scavengers and can be considered as good sources of natural antioxidants for medicinal and commercial uses.Further analysis showed that protease activity was a significantly high in the pulp compared to the peel.展开更多
文摘Utilization of the body’s regenerative potential for tissue repair is known as in situ tissue regeneration.However,the use of exogenous growth factors requires delicate control of the dose and delivery strategies and may be accompanied by safety,efficacy and cost concerns.In this study,we developed,for the first time,a biomaterial-based strategy to activate endogenous transforming growth factor beta 1(TGFβ1)under alkaline conditions for effective in situ tissue regeneration.We demonstrated that alkaline-activated TGFβ1 from blood serum,bone marrow fluids and soaking solutions of meniscus and tooth dentin was capable of increasing cell recruitment and early differentiation,implying its broad practicability.Furthermore,we engineered an injectable hydrogel(MS-Gel)consisting of gelatin microspheres for loading strong alkaline substances and a modified gelatin matrix for hydrogel click crosslinking.In vitro models showed that alkaline MS-Gel controllably and sustainably activated endogenous TGFβ1 from tooth dentin for robust bone marrow stem cell migration.More importantly,infusion of in vivo porcine prepared root canals with alkaline MS-Gel promoted significant pulp-dentin regeneration with neurovascular stroma and mineralized tissue by endogenous proliferative cells.Therefore,this work offers a new bench-to-beside translation strategy using biomaterial-activated endogenous biomolecules to achieve in situ tissue regeneration without the need for cell or protein delivery.
文摘Objective:The activity of enzymes participating in the systems of antioxidant protection was assayed in the peel and pulp of sunflower.The essential roles of proteases in food stimulate research to find other sources of the enzyme especially from non-conventional sources.In the present work,we study several biochemical parameters in the pulp and peel of sunflower.Methods:Pulp and peel of sunflower was extracted,antioxidant enzymes and nonenzymatic antioxidant were measured.Alkaline protease was measured and purified from pulp in sunflower.Results:High carbohydrate concentration,beta-carotene,catalase and ascorbate peroxidase activities,free radical scavenging capacity and free flavonoid content were observed in the peel of sunflower.Whereas,MDA and ceruloplasmin activities were high in the pulp of sunflower.Conclusions:The present study concluded that peel in sunflower are strong radical scavengers and can be considered as good sources of natural antioxidants for medicinal and commercial uses.Further analysis showed that protease activity was a significantly high in the pulp compared to the peel.