The reservoir of the upper Triassic Xujiahe Formation (T3x) in the Western Sichuan Foreland Basin is a set of terrigenous clastic rocks in an environment of coal measure sediments. Diagenesis greatly controls the phys...The reservoir of the upper Triassic Xujiahe Formation (T3x) in the Western Sichuan Foreland Basin is a set of terrigenous clastic rocks in an environment of coal measure sediments. Diagenesis greatly controls the physical properties of the reservoir through different responses of minerals to acidic and alkaline diagenetic environment. The dissolution of unstable components such as feldspar, rock fragments, carbonate cement, and clay minerals is the major source of secondary pores under acidic diagenesis, while the dissolution of quartz increases the reservoir space in the fault-fold zone of Longmen Mountain and Leikoupo paleo-hills. The dissolution of quartz is a result of cross-formation flow of fluid in the Himalaya epoch and the invasion of alkaline formation water from the Triassic Leikoupo and Jialingjiang formations through fault and fracture systems. In the vertical succession, acidic dissolution occurs at a shallow depth of less than 2,180 m, and alkaline dissolution occurs at a greater depth of more than 2,280 m. The reservoir space is formed by the influence of both acidic and alkaline dissolution in the depth interval of 2,180–2,280 m.展开更多
Alkaline diagnesis is a diagenetic process that a reservoir undergoes under an alkaline environment. Because of the influence of alkaline formation water, the most typical characteristics of diagnesis is that quartz i...Alkaline diagnesis is a diagenetic process that a reservoir undergoes under an alkaline environment. Because of the influence of alkaline formation water, the most typical characteristics of diagnesis is that quartz is obviously dissolved, feldspar is massively enlarged, and less late carbonate cement is formed in the evolution of carbonate minerals. With the decrease of the alkalinity of the formation water in diagenesis, the quartz overgrowths become common. The change in the chemical characteristics of the formation water leads to a more complex distribution of reservoir porosity at different depths than that of the secondary porosity formed by classical acidic water. It also makes the stage of early diagenesis the important development period of secondary porosity.展开更多
基金co-funded by the National Natural Science Foundation of China (No.40672078)China National Petroleum Corporation (CNPC)
文摘The reservoir of the upper Triassic Xujiahe Formation (T3x) in the Western Sichuan Foreland Basin is a set of terrigenous clastic rocks in an environment of coal measure sediments. Diagenesis greatly controls the physical properties of the reservoir through different responses of minerals to acidic and alkaline diagenetic environment. The dissolution of unstable components such as feldspar, rock fragments, carbonate cement, and clay minerals is the major source of secondary pores under acidic diagenesis, while the dissolution of quartz increases the reservoir space in the fault-fold zone of Longmen Mountain and Leikoupo paleo-hills. The dissolution of quartz is a result of cross-formation flow of fluid in the Himalaya epoch and the invasion of alkaline formation water from the Triassic Leikoupo and Jialingjiang formations through fault and fracture systems. In the vertical succession, acidic dissolution occurs at a shallow depth of less than 2,180 m, and alkaline dissolution occurs at a greater depth of more than 2,280 m. The reservoir space is formed by the influence of both acidic and alkaline dissolution in the depth interval of 2,180–2,280 m.
基金This work was supported by the National Key Project (also known as the 973 program) for Basic Researches of China (Grant No. G1999075507)
文摘Alkaline diagnesis is a diagenetic process that a reservoir undergoes under an alkaline environment. Because of the influence of alkaline formation water, the most typical characteristics of diagnesis is that quartz is obviously dissolved, feldspar is massively enlarged, and less late carbonate cement is formed in the evolution of carbonate minerals. With the decrease of the alkalinity of the formation water in diagenesis, the quartz overgrowths become common. The change in the chemical characteristics of the formation water leads to a more complex distribution of reservoir porosity at different depths than that of the secondary porosity formed by classical acidic water. It also makes the stage of early diagenesis the important development period of secondary porosity.