Weighted vertex cover(WVC)is one of the most important combinatorial optimization problems.In this paper,we provide a new game optimization to achieve efficiency and time of solutions for the WVC problem of weighted n...Weighted vertex cover(WVC)is one of the most important combinatorial optimization problems.In this paper,we provide a new game optimization to achieve efficiency and time of solutions for the WVC problem of weighted networks.We first model the WVC problem as a general game on weighted networks.Under the framework of a game,we newly define several cover states to describe the WVC problem.Moreover,we reveal the relationship among these cover states of the weighted network and the strict Nash equilibriums(SNEs)of the game.Then,we propose a game-based asynchronous algorithm(GAA),which can theoretically guarantee that all cover states of vertices converging in an SNE with polynomial time.Subsequently,we improve the GAA by adding 2-hop and 3-hop adjustment mechanisms,termed the improved game-based asynchronous algorithm(IGAA),in which we prove that it can obtain a better solution to the WVC problem than using a the GAA.Finally,numerical simulations demonstrate that the proposed IGAA can obtain a better approximate solution in promising computation time compared with the existing representative algorithms.展开更多
Through Wireless Sensor Networks(WSN)formation,industrial and academic communities have seen remarkable development in recent decades.One of the most common techniques to derive the best out of wireless sensor network...Through Wireless Sensor Networks(WSN)formation,industrial and academic communities have seen remarkable development in recent decades.One of the most common techniques to derive the best out of wireless sensor networks is to upgrade the operating group.The most important problem is the arrangement of optimal number of sensor nodes as clusters to discuss clustering method.In this method,new client nodes and dynamic methods are used to determine the optimal number of clusters and cluster heads which are to be better organized and proposed to classify each round.Parameters of effective energy use and the ability to decide the best method of attachments are included.The Problem coverage find change ability network route due to which traffic and delays keep the performance to be very high.A newer version of Gravity Analysis Algorithm(GAA)is used to solve this problem.This proposed new approach GAA is introduced to improve network lifetime,increase system energy efficiency and end delay performance.Simulation results show that modified GAA performance is better than other networks and it has more advanced Life Time Delay Clustering Algorithms-LTDCA protocols.The proposed method provides a set of data collection and increased throughput in wireless sensor networks.展开更多
基金partly supported by the National Natural Science Foundation of China(61751303,U20A2068,11771013)the Zhejiang Provincial Natural Science Foundation of China(LD19A010001)the Fundamental Research Funds for the Central Universities。
文摘Weighted vertex cover(WVC)is one of the most important combinatorial optimization problems.In this paper,we provide a new game optimization to achieve efficiency and time of solutions for the WVC problem of weighted networks.We first model the WVC problem as a general game on weighted networks.Under the framework of a game,we newly define several cover states to describe the WVC problem.Moreover,we reveal the relationship among these cover states of the weighted network and the strict Nash equilibriums(SNEs)of the game.Then,we propose a game-based asynchronous algorithm(GAA),which can theoretically guarantee that all cover states of vertices converging in an SNE with polynomial time.Subsequently,we improve the GAA by adding 2-hop and 3-hop adjustment mechanisms,termed the improved game-based asynchronous algorithm(IGAA),in which we prove that it can obtain a better solution to the WVC problem than using a the GAA.Finally,numerical simulations demonstrate that the proposed IGAA can obtain a better approximate solution in promising computation time compared with the existing representative algorithms.
文摘Through Wireless Sensor Networks(WSN)formation,industrial and academic communities have seen remarkable development in recent decades.One of the most common techniques to derive the best out of wireless sensor networks is to upgrade the operating group.The most important problem is the arrangement of optimal number of sensor nodes as clusters to discuss clustering method.In this method,new client nodes and dynamic methods are used to determine the optimal number of clusters and cluster heads which are to be better organized and proposed to classify each round.Parameters of effective energy use and the ability to decide the best method of attachments are included.The Problem coverage find change ability network route due to which traffic and delays keep the performance to be very high.A newer version of Gravity Analysis Algorithm(GAA)is used to solve this problem.This proposed new approach GAA is introduced to improve network lifetime,increase system energy efficiency and end delay performance.Simulation results show that modified GAA performance is better than other networks and it has more advanced Life Time Delay Clustering Algorithms-LTDCA protocols.The proposed method provides a set of data collection and increased throughput in wireless sensor networks.