期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Optimizing Polynomial-Time Solutions to a Network Weighted Vertex Cover Game 被引量:1
1
作者 Jie Chen Kaiyi Luo +2 位作者 Changbing Tang Zhao Zhang Xiang Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第2期512-523,共12页
Weighted vertex cover(WVC)is one of the most important combinatorial optimization problems.In this paper,we provide a new game optimization to achieve efficiency and time of solutions for the WVC problem of weighted n... Weighted vertex cover(WVC)is one of the most important combinatorial optimization problems.In this paper,we provide a new game optimization to achieve efficiency and time of solutions for the WVC problem of weighted networks.We first model the WVC problem as a general game on weighted networks.Under the framework of a game,we newly define several cover states to describe the WVC problem.Moreover,we reveal the relationship among these cover states of the weighted network and the strict Nash equilibriums(SNEs)of the game.Then,we propose a game-based asynchronous algorithm(GAA),which can theoretically guarantee that all cover states of vertices converging in an SNE with polynomial time.Subsequently,we improve the GAA by adding 2-hop and 3-hop adjustment mechanisms,termed the improved game-based asynchronous algorithm(IGAA),in which we prove that it can obtain a better solution to the WVC problem than using a the GAA.Finally,numerical simulations demonstrate that the proposed IGAA can obtain a better approximate solution in promising computation time compared with the existing representative algorithms. 展开更多
关键词 Game-based asynchronous algorithm(gaa) game optimization polynomial time strict Nash equilibrium(SNE) weighted vertex cover(WVC)
下载PDF
Energy-Efficient Cluster in Wireless Sensor Network Using Life Time Delay Clustering Algorithms
2
作者 V.Kumar N.Jayapandian P.Balasubramanie 《Computer Systems Science & Engineering》 SCIE EI 2022年第10期77-86,共10页
Through Wireless Sensor Networks(WSN)formation,industrial and academic communities have seen remarkable development in recent decades.One of the most common techniques to derive the best out of wireless sensor network... Through Wireless Sensor Networks(WSN)formation,industrial and academic communities have seen remarkable development in recent decades.One of the most common techniques to derive the best out of wireless sensor networks is to upgrade the operating group.The most important problem is the arrangement of optimal number of sensor nodes as clusters to discuss clustering method.In this method,new client nodes and dynamic methods are used to determine the optimal number of clusters and cluster heads which are to be better organized and proposed to classify each round.Parameters of effective energy use and the ability to decide the best method of attachments are included.The Problem coverage find change ability network route due to which traffic and delays keep the performance to be very high.A newer version of Gravity Analysis Algorithm(GAA)is used to solve this problem.This proposed new approach GAA is introduced to improve network lifetime,increase system energy efficiency and end delay performance.Simulation results show that modified GAA performance is better than other networks and it has more advanced Life Time Delay Clustering Algorithms-LTDCA protocols.The proposed method provides a set of data collection and increased throughput in wireless sensor networks. 展开更多
关键词 WSNS Gravity analysis algorithm-gaa life time delay clustering algorithms-LTDCA end to end delay energy efficient
下载PDF
遗传蚁群混合算法在水电站优化调度中的应用 被引量:4
3
作者 赵杰 董增川 +2 位作者 王德智 周慧 朱信华 《水电能源科学》 2008年第5期132-134,共3页
针对水电站中长期优化调度问题,提出采用遗传蚁群混合算法(GAA)求解。引入遗传变异的进化过程提高蚁群算法的寻优效率,并在种群随机搜索过程中嵌入确定性的模式搜索,改善寻优性能、加速了收敛,使算法同时具有随机性和确定性。实例计算... 针对水电站中长期优化调度问题,提出采用遗传蚁群混合算法(GAA)求解。引入遗传变异的进化过程提高蚁群算法的寻优效率,并在种群随机搜索过程中嵌入确定性的模式搜索,改善寻优性能、加速了收敛,使算法同时具有随机性和确定性。实例计算结果表明,该算法为水电站优化调度提供了有效求解方法。 展开更多
关键词 水电站 优化调度 遗传蚁群混合算法
下载PDF
基于前反馈神经网络分析优化Saccharomyces cerevisiae L9富硒条件 被引量:1
4
作者 张丹丹 黄鑫磊 程卫东 《中国食品添加剂》 CAS 北大核心 2021年第12期36-42,共7页
研究以前期分离的一个株富硒能力较强的Saccharomyces cerevisiae L9为材料,利用正交设计与前反馈神经网络结合遗传算法优化其富硒能力。优化结果为:葡萄糖2%、复合氮源为硫酸铵0.35%和蛋白胨1.65%、pH为5.4、接种量为5%、装样量为86mL... 研究以前期分离的一个株富硒能力较强的Saccharomyces cerevisiae L9为材料,利用正交设计与前反馈神经网络结合遗传算法优化其富硒能力。优化结果为:葡萄糖2%、复合氮源为硫酸铵0.35%和蛋白胨1.65%、pH为5.4、接种量为5%、装样量为86mL,初始硒质量浓度17μg/mL,温度30℃,转速180r/min,培养时间48小时,富硒量947μg/g。筛选的菌种具有工业化生产潜质,可作为开发富硒葡萄酒的菌种制剂。 展开更多
关键词 富硒酵母 筛选 条件优化 神经网络结合遗传算法(BPNN-GA) 富硒葡萄酒
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部