In order to optimize the spares configuration project at different stages during the life cycle, the factor of time is considered to relax the assumption of the spares steady demand in multi-echelon technique for reco...In order to optimize the spares configuration project at different stages during the life cycle, the factor of time is considered to relax the assumption of the spares steady demand in multi-echelon technique for recoverable item control (METRIC) theory. According to the method of systems analysis, the dynamic palm theorem is introduced to establish the prediction model of the spares demand rate, and its main influence factors are analyzed, based on which, the spares support effectiveness evaluation index system is studied, and the system optimization-oriented spares dynamic configuration method for multi-echelon multi-indenture system is proposed. Through the analysis of the optimization algorithm, the layered marginal algorithm is designed to improve the model calculation efficiency. In a given example, the multi-stage spares configuration project during its life cycle is gotten, the research result conforms to the actual status, and it can provide a new way for the spares dynamic optimization.展开更多
For the existing support vector machine, when recognizing more questions, the shortcomings of high computational complexity and low recognition rate under the low SNR are emerged. The characteristic parameter of the s...For the existing support vector machine, when recognizing more questions, the shortcomings of high computational complexity and low recognition rate under the low SNR are emerged. The characteristic parameter of the signal is extracted and optimized by using a clustering algorithm, support vector machine is trained by grading algorithm so as to enhance the rate of convergence, improve the performance of recognition under the low SNR and realize modulation recognition of the signal based on the modulation system of the constellation diagram in this paper. Simulation results show that the average recognition rate based on this algorithm is enhanced over 30% compared with methods that adopting clustering algorithm or support vector machine respectively under the low SNR. The average recognition rate can reach 90% when the SNR is 5 dB, and the method is easy to be achieved so that it has broad application prospect in the modulating recognition.展开更多
Model validation is the most important part of building a supervised model.For building a model with good generalization performance one must have a sensible data splitting strategy,and this is crucial for model valid...Model validation is the most important part of building a supervised model.For building a model with good generalization performance one must have a sensible data splitting strategy,and this is crucial for model validation.In this study,we con-ducted a comparative study on various reported data splitting methods.The MixSim model was employed to generate nine simulated datasets with different probabilities of mis-classification and variable sample sizes.Then partial least squares for discriminant analysis and support vector machines for classification were applied to these datasets.Data splitting methods tested included variants of cross-validation,bootstrapping,bootstrapped Latin partition,Kennard-Stone algorithm(K-S)and sample set partitioning based on joint X-Y distances algorithm(SPXY).These methods were employed to split the data into training and validation sets.The estimated generalization performances from the validation sets were then compared with the ones obtained from the blind test sets which were generated from the same distribution but were unseen by the train-ing/validation procedure used in model construction.The results showed that the size of the data is the deciding factor for the qualities of the generalization performance estimated from the validation set.We found that there was a significant gap between the performance estimated from the validation set and the one from the test set for the all the data splitting methods employed on small datasets.Such disparity decreased when more samples were available for training/validation,and this is because the models were then moving towards approximations of the central limit theory for the simulated datasets used.We also found that having too many or too few samples in the training set had a negative effect on the estimated model performance,suggesting that it is necessary to have a good balance between the sizes of training set and validation set to have a reliable estimation of model performance.We also found that systematic sampling method such a展开更多
基金supported by the National Defense Pre-research Project in 13th Five-Year(41404050502)the National Defense Science and Technology Fund of the Central Military Commission(2101140)
文摘In order to optimize the spares configuration project at different stages during the life cycle, the factor of time is considered to relax the assumption of the spares steady demand in multi-echelon technique for recoverable item control (METRIC) theory. According to the method of systems analysis, the dynamic palm theorem is introduced to establish the prediction model of the spares demand rate, and its main influence factors are analyzed, based on which, the spares support effectiveness evaluation index system is studied, and the system optimization-oriented spares dynamic configuration method for multi-echelon multi-indenture system is proposed. Through the analysis of the optimization algorithm, the layered marginal algorithm is designed to improve the model calculation efficiency. In a given example, the multi-stage spares configuration project during its life cycle is gotten, the research result conforms to the actual status, and it can provide a new way for the spares dynamic optimization.
基金supported in part by the National Natural Science Foundation of China under Grand No.61871129 and No.61301179Projects of Science and Technology Plan Guangdong Province under Grand No.2014A010101284
文摘For the existing support vector machine, when recognizing more questions, the shortcomings of high computational complexity and low recognition rate under the low SNR are emerged. The characteristic parameter of the signal is extracted and optimized by using a clustering algorithm, support vector machine is trained by grading algorithm so as to enhance the rate of convergence, improve the performance of recognition under the low SNR and realize modulation recognition of the signal based on the modulation system of the constellation diagram in this paper. Simulation results show that the average recognition rate based on this algorithm is enhanced over 30% compared with methods that adopting clustering algorithm or support vector machine respectively under the low SNR. The average recognition rate can reach 90% when the SNR is 5 dB, and the method is easy to be achieved so that it has broad application prospect in the modulating recognition.
基金YX and RG thank Wellcome Trust for funding MetaboFlow(Grant 202952/Z/16/Z).
文摘Model validation is the most important part of building a supervised model.For building a model with good generalization performance one must have a sensible data splitting strategy,and this is crucial for model validation.In this study,we con-ducted a comparative study on various reported data splitting methods.The MixSim model was employed to generate nine simulated datasets with different probabilities of mis-classification and variable sample sizes.Then partial least squares for discriminant analysis and support vector machines for classification were applied to these datasets.Data splitting methods tested included variants of cross-validation,bootstrapping,bootstrapped Latin partition,Kennard-Stone algorithm(K-S)and sample set partitioning based on joint X-Y distances algorithm(SPXY).These methods were employed to split the data into training and validation sets.The estimated generalization performances from the validation sets were then compared with the ones obtained from the blind test sets which were generated from the same distribution but were unseen by the train-ing/validation procedure used in model construction.The results showed that the size of the data is the deciding factor for the qualities of the generalization performance estimated from the validation set.We found that there was a significant gap between the performance estimated from the validation set and the one from the test set for the all the data splitting methods employed on small datasets.Such disparity decreased when more samples were available for training/validation,and this is because the models were then moving towards approximations of the central limit theory for the simulated datasets used.We also found that having too many or too few samples in the training set had a negative effect on the estimated model performance,suggesting that it is necessary to have a good balance between the sizes of training set and validation set to have a reliable estimation of model performance.We also found that systematic sampling method such a