Ultimate bearing capacity(UBC)is a key subject in geotechnical/foundation engineering as it determines the limit of loads imposed on the foundation.The most reliable means of determining UBC is through experiment,but ...Ultimate bearing capacity(UBC)is a key subject in geotechnical/foundation engineering as it determines the limit of loads imposed on the foundation.The most reliable means of determining UBC is through experiment,but it is costly and time-consuming which has led to the development of various models based on the simplified assumptions.The outcomes of the models are usually validated with the experimental results,but a large gap usually exists between them.Therefore,a model that can give a close prediction of the experimental results is imperative.This study proposes a grasshopper optimization algorithm(GOA)and salp swarm algorithm(SSA)to optimize artificial neural networks(ANNs)using the existing UBC experimental database.The performances of the proposed models are evaluated using various statistical indices.The obtained results are compared with the existing models.The proposed models outperformed the existing models.The proposed hybrid GOA-ANN and SSA-ANN models are then transformed into mathematical forms that can be incorporated into geotechnical/foundation engineering design codes for accurate UBC measurements.展开更多
Identifying the parameters of photovoltaic(PV)modules is significant for their design and simulation.Because of the instabilities in the weather action and land surface of the earth,which cause errors in measuring,a n...Identifying the parameters of photovoltaic(PV)modules is significant for their design and simulation.Because of the instabilities in the weather action and land surface of the earth,which cause errors in measuring,a novel fuzzy representation-based PV module is formulated and developed.In this paper,a novel locomotion-based hybrid salp swarm algorithm(LHSSA)is presented to identify the parameters of PV modules accurately and reliably.In the LHSSA,better leader salps based on particle swarm optimization(PSO)are incorporated to the traditional salp swarm algorithm(SSA)in a serialized scheme with the aim of providing more valuable information for the leader salps of the SSA.By this integration,the proposed LHSSA can escape the local optima as well as guide the seeking process to attain the promising region.The proposed LHSSA is investigated on different PV models,i.e.,single-diode(SD),double-diode(DD),and PV module in crisp and fuzzy aspects.By comparing with different algorithms,the comprehensive results affirm that the LHSSA can achieve a highly competitive performance,especially on quality and reliability.展开更多
基金supported by Korea Research Fellowship Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(Grant No.2019H1D3A1A01102993)the Inha University Research Grant(2022).
文摘Ultimate bearing capacity(UBC)is a key subject in geotechnical/foundation engineering as it determines the limit of loads imposed on the foundation.The most reliable means of determining UBC is through experiment,but it is costly and time-consuming which has led to the development of various models based on the simplified assumptions.The outcomes of the models are usually validated with the experimental results,but a large gap usually exists between them.Therefore,a model that can give a close prediction of the experimental results is imperative.This study proposes a grasshopper optimization algorithm(GOA)and salp swarm algorithm(SSA)to optimize artificial neural networks(ANNs)using the existing UBC experimental database.The performances of the proposed models are evaluated using various statistical indices.The obtained results are compared with the existing models.The proposed models outperformed the existing models.The proposed hybrid GOA-ANN and SSA-ANN models are then transformed into mathematical forms that can be incorporated into geotechnical/foundation engineering design codes for accurate UBC measurements.
文摘Identifying the parameters of photovoltaic(PV)modules is significant for their design and simulation.Because of the instabilities in the weather action and land surface of the earth,which cause errors in measuring,a novel fuzzy representation-based PV module is formulated and developed.In this paper,a novel locomotion-based hybrid salp swarm algorithm(LHSSA)is presented to identify the parameters of PV modules accurately and reliably.In the LHSSA,better leader salps based on particle swarm optimization(PSO)are incorporated to the traditional salp swarm algorithm(SSA)in a serialized scheme with the aim of providing more valuable information for the leader salps of the SSA.By this integration,the proposed LHSSA can escape the local optima as well as guide the seeking process to attain the promising region.The proposed LHSSA is investigated on different PV models,i.e.,single-diode(SD),double-diode(DD),and PV module in crisp and fuzzy aspects.By comparing with different algorithms,the comprehensive results affirm that the LHSSA can achieve a highly competitive performance,especially on quality and reliability.