In a recent article [Commun. Theor. Phys. (Beijing, China) 43 (2005) 39], Xie et al. improved the extended tanh function method by introducing a generalized Riccati equation and its new solutions. Then they choose the...In a recent article [Commun. Theor. Phys. (Beijing, China) 43 (2005) 39], Xie et al. improved the extended tanh function method by introducing a generalized Riccati equation and its new solutions. Then they choose the Karamoto-Sivashinsky (KS) equation to illustrate their approach and obtain many exact solutions of the KS equation.So they claim that, by using their method, one not only can successfully recover the previously known formal solutions but also construct new and more general formal solutions for some nonlinear evolution equations. In this comment, we will show that the claim is incorrect.展开更多
An extended Fan's algebraic method is used for constructing exact traveling wave solution of nonlinearpartial differential equations.The key idea of this method is to introduce an auxiliary ordinary differential e...An extended Fan's algebraic method is used for constructing exact traveling wave solution of nonlinearpartial differential equations.The key idea of this method is to introduce an auxiliary ordinary differential equationwhich is regarded as an extended elliptic equation and whose degree Υ is expanded to the case of r>4.The efficiency ofthe method is demonstrated by the KdV equation and the variant Boussinesq equations.The results indicate that themethod not only offers all solutions obtained by using Fu's and Fan's methods,but also some new solutions.展开更多
In this paper, we present a new rational algebraic approach to uniformly construct a series of exact analytical solutions for nonlinear partial differential equations. Compared with most existing tanh methods and othe...In this paper, we present a new rational algebraic approach to uniformly construct a series of exact analytical solutions for nonlinear partial differential equations. Compared with most existing tanh methods and other sophisticated methods, the proposed method not only recovers some known solutions, but also finds some new and general solutions. The solutions obtained in this paper include rational form triangular periodic wave solutions, solitary wave solutions, and elliptic doubly periodic wave solutions. The efficiency of the method can be demonstrated on (2+1)-dimensional dispersive long-wave equation.展开更多
The authors propose a data-driven direct adaptive control law based on the adaptive dynamic programming(ADP) algorithm for continuous-time stochastic linear systems with partially unknown system dynamics and infinite ...The authors propose a data-driven direct adaptive control law based on the adaptive dynamic programming(ADP) algorithm for continuous-time stochastic linear systems with partially unknown system dynamics and infinite horizon quadratic risk-sensitive indices.The authors use online data of the system to iteratively solve the generalized algebraic Riccati equation(GARE) and to learn the optimal control law directly.For the case with measurable system noises,the authors show that the adaptive control law approximates the optimal control law as time goes on.For the case with unmeasurable system noises,the authors use the least-square solution calculated only from the measurable data instead of the real solution of the regression equation to iteratively solve the GARE.The authors also study the influences of the intensity of the system noises,the intensity of the exploration noises,the initial iterative matrix,and the sampling period on the convergence of the ADP algorithm.Finally,the authors present two numerical simulation examples to demonstrate the effectiveness of the proposed algorithms.展开更多
The objective of dynamical system learning tasks is to forecast the future behavior of a system by leveraging observed data.However,such systems can sometimes exhibit rigidity due to significant variations in componen...The objective of dynamical system learning tasks is to forecast the future behavior of a system by leveraging observed data.However,such systems can sometimes exhibit rigidity due to significant variations in component parameters or the presence of slow and fast variables,leading to challenges in learning.To overcome this limitation,we propose a multiscale differential-algebraic neural network(MDANN)method that utilizes Lagrangian mechanics and incorporates multiscale information for dynamical system learning.The MDANN method consists of two main components:the Lagrangian mechanics module and the multiscale module.The Lagrangian mechanics module embeds the system in Cartesian coordinates,adopts a differential-algebraic equation format,and uses Lagrange multipliers to impose constraints explicitly,simplifying the learning problem.The multiscale module converts high-frequency components into low-frequency components using radial scaling to learn subprocesses with large differences in velocity.Experimental results demonstrate that the proposed MDANN method effectively improves the learning of dynamical systems under rigid conditions.展开更多
This paper considers the class of autonomous algebraic ordinary differential equations(AODEs)of order one,and studies their Liouvillian general solutions.In particular,let F(y,w)=0 be a rational algebraic curve over C...This paper considers the class of autonomous algebraic ordinary differential equations(AODEs)of order one,and studies their Liouvillian general solutions.In particular,let F(y,w)=0 be a rational algebraic curve over C.The authors give necessary and sufficient conditions for the autonomous first-order AODE F(y,y′)=0 to have a Liouvillian solution over C.Moreover,the authors show that a Liouvillian solutionαof this equation is either an algebraic function over C(x)or an algebraic function over C(exp(ax)).As a byproduct,these results lead to an algorithm for determining a Liouvillian general solution of an autonomous AODE of order one of genus zero.Rational parametrizations of rational algebraic curves play an important role on this method.展开更多
If a first-order algebraic ODE is defined over a certain differential field,then the most elementary solution class,in which one can hope to find a general solution,is given by the adjunction of a single arbitrary con...If a first-order algebraic ODE is defined over a certain differential field,then the most elementary solution class,in which one can hope to find a general solution,is given by the adjunction of a single arbitrary constant to this field.Solutions of this type give rise to a particular kind of generic point—a rational parametrization—of an algebraic curve which is associated in a natural way to the ODE’s defining polynomial.As for the opposite direction,we show that a suitable rational parametrization of the associated curve can be extended to a general solution of the ODE if and only if one can find a certain automorphism of the solution field.These automorphisms are determined by linear rational functions,i.e.,Möbius transformations.Intrinsic properties of rational parametrizations,in combination with the particular shape of such automorphisms,lead to a number of necessary conditions on the existence of general solutions in this solution class.Furthermore,the desired linear rational function can be determined by solving a comparatively simple differential system over the ODE’s field of definition.These results hold for arbitrary differential fields of characteristic zero.展开更多
文摘In a recent article [Commun. Theor. Phys. (Beijing, China) 43 (2005) 39], Xie et al. improved the extended tanh function method by introducing a generalized Riccati equation and its new solutions. Then they choose the Karamoto-Sivashinsky (KS) equation to illustrate their approach and obtain many exact solutions of the KS equation.So they claim that, by using their method, one not only can successfully recover the previously known formal solutions but also construct new and more general formal solutions for some nonlinear evolution equations. In this comment, we will show that the claim is incorrect.
基金National Natural Science Foundation of China under Grant No.10672053
文摘An extended Fan's algebraic method is used for constructing exact traveling wave solution of nonlinearpartial differential equations.The key idea of this method is to introduce an auxiliary ordinary differential equationwhich is regarded as an extended elliptic equation and whose degree Υ is expanded to the case of r>4.The efficiency ofthe method is demonstrated by the KdV equation and the variant Boussinesq equations.The results indicate that themethod not only offers all solutions obtained by using Fu's and Fan's methods,but also some new solutions.
基金The project supported by National Natural Science Foundation of China, the Natural Science Foundation of Shandong Province of China, and the Natural Science Foundation of Liaocheng University .
文摘In this paper, we present a new rational algebraic approach to uniformly construct a series of exact analytical solutions for nonlinear partial differential equations. Compared with most existing tanh methods and other sophisticated methods, the proposed method not only recovers some known solutions, but also finds some new and general solutions. The solutions obtained in this paper include rational form triangular periodic wave solutions, solitary wave solutions, and elliptic doubly periodic wave solutions. The efficiency of the method can be demonstrated on (2+1)-dimensional dispersive long-wave equation.
基金supported in part by the National Natural Science Foundation of China under Grant No.62261136550in part by the Basic Research Project of Shanghai Science and Technology Commission under Grant No.20JC1414000。
文摘The authors propose a data-driven direct adaptive control law based on the adaptive dynamic programming(ADP) algorithm for continuous-time stochastic linear systems with partially unknown system dynamics and infinite horizon quadratic risk-sensitive indices.The authors use online data of the system to iteratively solve the generalized algebraic Riccati equation(GARE) and to learn the optimal control law directly.For the case with measurable system noises,the authors show that the adaptive control law approximates the optimal control law as time goes on.For the case with unmeasurable system noises,the authors use the least-square solution calculated only from the measurable data instead of the real solution of the regression equation to iteratively solve the GARE.The authors also study the influences of the intensity of the system noises,the intensity of the exploration noises,the initial iterative matrix,and the sampling period on the convergence of the ADP algorithm.Finally,the authors present two numerical simulation examples to demonstrate the effectiveness of the proposed algorithms.
基金supported by the National Natural Science Foundations of China(Nos.12172186 and 11772166).
文摘The objective of dynamical system learning tasks is to forecast the future behavior of a system by leveraging observed data.However,such systems can sometimes exhibit rigidity due to significant variations in component parameters or the presence of slow and fast variables,leading to challenges in learning.To overcome this limitation,we propose a multiscale differential-algebraic neural network(MDANN)method that utilizes Lagrangian mechanics and incorporates multiscale information for dynamical system learning.The MDANN method consists of two main components:the Lagrangian mechanics module and the multiscale module.The Lagrangian mechanics module embeds the system in Cartesian coordinates,adopts a differential-algebraic equation format,and uses Lagrange multipliers to impose constraints explicitly,simplifying the learning problem.The multiscale module converts high-frequency components into low-frequency components using radial scaling to learn subprocesses with large differences in velocity.Experimental results demonstrate that the proposed MDANN method effectively improves the learning of dynamical systems under rigid conditions.
基金supported by Vietnam National Foundation for Science and Technology Development(NAFOSTED)under Grant No.101.04-2017.312。
文摘This paper considers the class of autonomous algebraic ordinary differential equations(AODEs)of order one,and studies their Liouvillian general solutions.In particular,let F(y,w)=0 be a rational algebraic curve over C.The authors give necessary and sufficient conditions for the autonomous first-order AODE F(y,y′)=0 to have a Liouvillian solution over C.Moreover,the authors show that a Liouvillian solutionαof this equation is either an algebraic function over C(x)or an algebraic function over C(exp(ax)).As a byproduct,these results lead to an algorithm for determining a Liouvillian general solution of an autonomous AODE of order one of genus zero.Rational parametrizations of rational algebraic curves play an important role on this method.
文摘If a first-order algebraic ODE is defined over a certain differential field,then the most elementary solution class,in which one can hope to find a general solution,is given by the adjunction of a single arbitrary constant to this field.Solutions of this type give rise to a particular kind of generic point—a rational parametrization—of an algebraic curve which is associated in a natural way to the ODE’s defining polynomial.As for the opposite direction,we show that a suitable rational parametrization of the associated curve can be extended to a general solution of the ODE if and only if one can find a certain automorphism of the solution field.These automorphisms are determined by linear rational functions,i.e.,Möbius transformations.Intrinsic properties of rational parametrizations,in combination with the particular shape of such automorphisms,lead to a number of necessary conditions on the existence of general solutions in this solution class.Furthermore,the desired linear rational function can be determined by solving a comparatively simple differential system over the ODE’s field of definition.These results hold for arbitrary differential fields of characteristic zero.