Paralytic shellfish poisoning (PSP) toxins are potent neurotoxins mainly produced by dinoflagellates and being concentrated in bivalves through food web transfer. Increasing number of findings of toxin-producing bacte...Paralytic shellfish poisoning (PSP) toxins are potent neurotoxins mainly produced by dinoflagellates and being concentrated in bivalves through food web transfer. Increasing number of findings of toxin-producing bacteria in the cells of dinoflagellate such as Alexandriumtamarense supports the hypothesis of the bacterial origin of PSP toxins. Evidence that there are specific symbiosis bacterial taxa associated with the phytoplankton indicates the presence of specific selective mechanisms between them, and implies that the symbiosis bacteria have some vital function to the benefit of the dinoflagellates. Studies on the role of toxin-producing symbiosis bacteria in the marine ecosystem are considered to be becoming more important. Although toxigenic bacteria could be isolated from toxic dinoflagellates, it was not clearly proven whether the isolated bacterial strains based on culture-dependent manner and the corresponding intracellular bacteria were the same because of microbial unculturability. This paper aims to demonstrate the biodiversity of the symbiotic bacteria associated with toxic dinoflagellate A. tamarense using the culture-indepen- dent high-throughput pyrosequencing method, as well as the phylogenetic analysis based on 16S rDNA sequences of the symbiotic cultivable bacteria strains isolated from toxic Alexander tamarense.展开更多
文摘Paralytic shellfish poisoning (PSP) toxins are potent neurotoxins mainly produced by dinoflagellates and being concentrated in bivalves through food web transfer. Increasing number of findings of toxin-producing bacteria in the cells of dinoflagellate such as Alexandriumtamarense supports the hypothesis of the bacterial origin of PSP toxins. Evidence that there are specific symbiosis bacterial taxa associated with the phytoplankton indicates the presence of specific selective mechanisms between them, and implies that the symbiosis bacteria have some vital function to the benefit of the dinoflagellates. Studies on the role of toxin-producing symbiosis bacteria in the marine ecosystem are considered to be becoming more important. Although toxigenic bacteria could be isolated from toxic dinoflagellates, it was not clearly proven whether the isolated bacterial strains based on culture-dependent manner and the corresponding intracellular bacteria were the same because of microbial unculturability. This paper aims to demonstrate the biodiversity of the symbiotic bacteria associated with toxic dinoflagellate A. tamarense using the culture-indepen- dent high-throughput pyrosequencing method, as well as the phylogenetic analysis based on 16S rDNA sequences of the symbiotic cultivable bacteria strains isolated from toxic Alexander tamarense.