A novel design for an electrostriction appliance derived from the theory and application of electromagnetics is presented. The working principle, that is the application of gravitation and elasticity together to reali...A novel design for an electrostriction appliance derived from the theory and application of electromagnetics is presented. The working principle, that is the application of gravitation and elasticity together to realize the "shrinking" and "extending" effect from the distortion and transforming power into mechanical energy, is briefly explained. The characteristic parameter relationships are established and the experimental research is performed. Experimental results show that this sort of electrostriction appliance can perform well as regards driving force and beeline displacement, and furthermore, its self-weight is smaller. This makes it suitable for beeline drivers with a high application value, especially for the driver of the bionic appliance. In the application of the electrostriction appliance to a bionics-flapping aircraft, the wings can work with a flapping angle in the range of a certain value by controlling the "shrinking" and "extending" of the electrostriction appliance. It can reduce the startup power and the impact load of the driver. The flapping extent of the wings will change when the voltage which is put into the electrostriction appliance varies. This makes it more flexible as the bionics-flapping aircraft realizes different actions of flying.展开更多
In view of the complexity of landing on the deck of aircraft carrier,a systematic model,composed of sixdegree-of-freedom mathematic model of carrier-based aircraft,four-degree-of-freedom model of landing gears and six...In view of the complexity of landing on the deck of aircraft carrier,a systematic model,composed of sixdegree-of-freedom mathematic model of carrier-based aircraft,four-degree-of-freedom model of landing gears and six-degree-of-freedom mathematic model of carrier,is established in the Matlab-Simulink environment,with damping function of landing gears and dynamic characteristics of tires being considered.The model,where the carrier movement is introduced,is applicable for any abnormal landing condition.Moreover,the equations of motion and relevant parameter are also derived.The dynamic response of aircraft is calculated via the variable step-size RungeKuta algorithm.The effect of attitude angles of aircraft and carrier movement during the process of landing is illustrated in details.The analytical results can provide some reference for carrier-based aircraft design and maintenance.展开更多
文摘A novel design for an electrostriction appliance derived from the theory and application of electromagnetics is presented. The working principle, that is the application of gravitation and elasticity together to realize the "shrinking" and "extending" effect from the distortion and transforming power into mechanical energy, is briefly explained. The characteristic parameter relationships are established and the experimental research is performed. Experimental results show that this sort of electrostriction appliance can perform well as regards driving force and beeline displacement, and furthermore, its self-weight is smaller. This makes it suitable for beeline drivers with a high application value, especially for the driver of the bionic appliance. In the application of the electrostriction appliance to a bionics-flapping aircraft, the wings can work with a flapping angle in the range of a certain value by controlling the "shrinking" and "extending" of the electrostriction appliance. It can reduce the startup power and the impact load of the driver. The flapping extent of the wings will change when the voltage which is put into the electrostriction appliance varies. This makes it more flexible as the bionics-flapping aircraft realizes different actions of flying.
基金Supported by the National Natural Science Foundation of China(51075203,51105197)the Research Funding of Nanjing University of Aeronautics and Astronautics(NS2010023)
文摘In view of the complexity of landing on the deck of aircraft carrier,a systematic model,composed of sixdegree-of-freedom mathematic model of carrier-based aircraft,four-degree-of-freedom model of landing gears and six-degree-of-freedom mathematic model of carrier,is established in the Matlab-Simulink environment,with damping function of landing gears and dynamic characteristics of tires being considered.The model,where the carrier movement is introduced,is applicable for any abnormal landing condition.Moreover,the equations of motion and relevant parameter are also derived.The dynamic response of aircraft is calculated via the variable step-size RungeKuta algorithm.The effect of attitude angles of aircraft and carrier movement during the process of landing is illustrated in details.The analytical results can provide some reference for carrier-based aircraft design and maintenance.