A new concept is presented for air-to-air missile which is dynamic attack zone after being launched in random wind field. This new concept can be used to obtain the 4-dimensional (4-D) information regarding the dyna...A new concept is presented for air-to-air missile which is dynamic attack zone after being launched in random wind field. This new concept can be used to obtain the 4-dimensional (4-D) information regarding the dynamic envelope of an air-to-air missile at any flight time airned at different flight targets considering influences of random wind, in the situation of flight fighters coop- crated with missiles fighting against each other. Based on an air-to-air missile model, some typical cases of dynamic attack zone after being launched in random wind field were numerically simulated. Compared with the simulation results of traditional dynamic envelope, the properties of dynamic attack zone after being launched are as follows. The 4-D dynamic attack zone after being launched is inside traditional maximum dynamic envelope, but its forane boundary is usually not inside traditional no-escape dynamic envelope; Traditional dynamic attack zone can just be reliably used at launch time, while dynamic envelope after being launched can be reliably and accurately used during any flight antagonism time. Traditional envelope is a special case of dynamic envelope after being launched when the dynamic envelope is calculated at the launch time: the dynamic envelope after being launched can be inflt, enced by the random wind field.展开更多
Unmanned autonomous Air-to-Air Refueling(AAR)capability is the key guarantee to support the distant-field,high-intensity and durable operations of the penetration counterair combat system.In the future,the long-range ...Unmanned autonomous Air-to-Air Refueling(AAR)capability is the key guarantee to support the distant-field,high-intensity and durable operations of the penetration counterair combat system.In the future,the long-range unmanned reconnaissance and attack platform can reach the maximum flight range requirement through AAR.At present,large transport aircraft platforms in China are still equipped with probe-and-drogue systems,and the refueling mode is gradually changing from manned to unmanned autonomous operation.The docking process is the riskiest and most important part,and there are strict safety,precision,and efficiency requirements for refueling operation,especially during close-distance docking and formation maintenance phases.In this paper,five issues that need to be solved to achieve autonomous AAR docking are summarized.On this basis,five key technology development needs are proposed to solve these engineering issues.Finally,some prospects are given.展开更多
The interception information of infrared( IR)-guided air-to-air missiles( AAM) is mainly estimated only using the basic bearing measurements. In order to intercept highly maneuverable targets,it is essential to st...The interception information of infrared( IR)-guided air-to-air missiles( AAM) is mainly estimated only using the basic bearing measurements. In order to intercept highly maneuverable targets,it is essential to study the system observability to improve the target tracking system performance.The uniqueness of this paper is that the observability analysis is derived based on a discrete three-dimensional (3D) system model. During the maneuvering scenario,the system is approximated by a segment-by-segment system. The relationship between missile-target motion and observability is given by direct and dual approaches. Meanwhile sufficient observability conditions are derived. Moreover,a numerical simulation is conducted and an alternate method is provided to reinforce the proposed observability analysis results.展开更多
文摘A new concept is presented for air-to-air missile which is dynamic attack zone after being launched in random wind field. This new concept can be used to obtain the 4-dimensional (4-D) information regarding the dynamic envelope of an air-to-air missile at any flight time airned at different flight targets considering influences of random wind, in the situation of flight fighters coop- crated with missiles fighting against each other. Based on an air-to-air missile model, some typical cases of dynamic attack zone after being launched in random wind field were numerically simulated. Compared with the simulation results of traditional dynamic envelope, the properties of dynamic attack zone after being launched are as follows. The 4-D dynamic attack zone after being launched is inside traditional maximum dynamic envelope, but its forane boundary is usually not inside traditional no-escape dynamic envelope; Traditional dynamic attack zone can just be reliably used at launch time, while dynamic envelope after being launched can be reliably and accurately used during any flight antagonism time. Traditional envelope is a special case of dynamic envelope after being launched when the dynamic envelope is calculated at the launch time: the dynamic envelope after being launched can be inflt, enced by the random wind field.
文摘Unmanned autonomous Air-to-Air Refueling(AAR)capability is the key guarantee to support the distant-field,high-intensity and durable operations of the penetration counterair combat system.In the future,the long-range unmanned reconnaissance and attack platform can reach the maximum flight range requirement through AAR.At present,large transport aircraft platforms in China are still equipped with probe-and-drogue systems,and the refueling mode is gradually changing from manned to unmanned autonomous operation.The docking process is the riskiest and most important part,and there are strict safety,precision,and efficiency requirements for refueling operation,especially during close-distance docking and formation maintenance phases.In this paper,five issues that need to be solved to achieve autonomous AAR docking are summarized.On this basis,five key technology development needs are proposed to solve these engineering issues.Finally,some prospects are given.
基金Supported by the National Natural Science Foundation of China(61333011)
文摘The interception information of infrared( IR)-guided air-to-air missiles( AAM) is mainly estimated only using the basic bearing measurements. In order to intercept highly maneuverable targets,it is essential to study the system observability to improve the target tracking system performance.The uniqueness of this paper is that the observability analysis is derived based on a discrete three-dimensional (3D) system model. During the maneuvering scenario,the system is approximated by a segment-by-segment system. The relationship between missile-target motion and observability is given by direct and dual approaches. Meanwhile sufficient observability conditions are derived. Moreover,a numerical simulation is conducted and an alternate method is provided to reinforce the proposed observability analysis results.