This paper proposes a simple method of optimizing Air Quality Monitoring Network (AQMN) using Geographical Information System (GIS), interpolation techniques and historical data. Existing air quality stations are syst...This paper proposes a simple method of optimizing Air Quality Monitoring Network (AQMN) using Geographical Information System (GIS), interpolation techniques and historical data. Existing air quality stations are systematically eliminated and the missing data are filled in using the most appropriate interpolation technique. The interpolated data are then compared with the observed data. Pre-defined performance measures root mean square error (RMSE), mean absolute percentage error (MAPE) and correlation coefficient (r) were used to check the accuracy of the interpolated data. An algorithm was developed in GIS environment and the process was simulated for several sets of measurements conducted in different locations in Riyadh, Saudi Arabia. This methodology proves to be useful to the decision makers to find optimal numbers of stations that are needed without compromising the coverage of the concentrations across the study area.展开更多
文摘This paper proposes a simple method of optimizing Air Quality Monitoring Network (AQMN) using Geographical Information System (GIS), interpolation techniques and historical data. Existing air quality stations are systematically eliminated and the missing data are filled in using the most appropriate interpolation technique. The interpolated data are then compared with the observed data. Pre-defined performance measures root mean square error (RMSE), mean absolute percentage error (MAPE) and correlation coefficient (r) were used to check the accuracy of the interpolated data. An algorithm was developed in GIS environment and the process was simulated for several sets of measurements conducted in different locations in Riyadh, Saudi Arabia. This methodology proves to be useful to the decision makers to find optimal numbers of stations that are needed without compromising the coverage of the concentrations across the study area.