This paper investigates fault tolerant attitude control theory and experiment for underactuated spacecraft with one reaction wheel completely broken and two others suffering actuator faults of partial loss of effectiv...This paper investigates fault tolerant attitude control theory and experiment for underactuated spacecraft with one reaction wheel completely broken and two others suffering actuator faults of partial loss of effectiveness or bias.A non-smooth robust adaptive fault tolerant control law is proposed under the zero-momentum and input saturation conditions.It shows that the available reaction wheels need to produce sufficient control torque for the fault tolerance.Such a new control method is implemented in a semi-physical simulation system of an air-bearing platform.Experimental results show the effectiveness of the proposed method in spacecraft practical engineering.展开更多
The Microgravity Active vibration Isolation System(MAIS),which was onboard China’s first cargo-spacecraft Tianzhou-1 launched on April 20,2017,aims to provide high-level microgravity at an order of 10^(-5)–10^(-6)g ...The Microgravity Active vibration Isolation System(MAIS),which was onboard China’s first cargo-spacecraft Tianzhou-1 launched on April 20,2017,aims to provide high-level microgravity at an order of 10^(-5)–10^(-6)g for specific scientific experiments.MAIS is mainly composed of a stator and a floater,and payloads are mounted on the floater.Sensing relative motion with respect to the stator fixed on the spacecraft,the floater is isolated from vibration on the stator via control forces and torques generated by electromagnetic actuators.This isolation results in a high-level microgravity environment.Before MAIS was launched into space,its control performance had been simulated on computers and tested by air-bearing platform levitation and aircraft parabolic flight.This article first presents an overview of the MAIS’s hardware system,particularly system structure,measurement sensors,and control actuators.Its system dynamics,state estimation,and control laws are then discussed,followed by the results of computer simulation and engineering tests,including the test of the six-degree-of-freedom motion by aircraft parabolic flight.Simulation and test results verify the accuracy of the control strategy design,effectiveness of the control algorithms,and performance of the entire control system,paving the way for operation of MAIS in space.This article also presents the steps recommended for the control performance simulation and tests of MAIS-like devices.These devices are expected to be used on China’s Space Station for various scientific experiments that require a high-level microgravity environment.展开更多
基金supported by the National Natural Science Foundation of China(Nos.62073165 and 62233009)the 111 Project,China(No.B20007).
文摘This paper investigates fault tolerant attitude control theory and experiment for underactuated spacecraft with one reaction wheel completely broken and two others suffering actuator faults of partial loss of effectiveness or bias.A non-smooth robust adaptive fault tolerant control law is proposed under the zero-momentum and input saturation conditions.It shows that the available reaction wheels need to produce sufficient control torque for the fault tolerance.Such a new control method is implemented in a semi-physical simulation system of an air-bearing platform.Experimental results show the effectiveness of the proposed method in spacecraft practical engineering.
基金The authors gratefully acknowledge DLR for providing us the opportunity to attend the 27th parabolic flight campaign and Novespace for the support for the test of MAIS by the Airbus A310 ZERO-GThe authors would also like to thank Weijia Ren,Xiaoru Sang,Shimeng Lv,Peng Yang,Yu-e Gao,Lingcai Song,Mengxi Yu,Boqi Kang,Yanlin Zhou,and Anping Wang,who have contributed significantly to the MAIS project.
文摘The Microgravity Active vibration Isolation System(MAIS),which was onboard China’s first cargo-spacecraft Tianzhou-1 launched on April 20,2017,aims to provide high-level microgravity at an order of 10^(-5)–10^(-6)g for specific scientific experiments.MAIS is mainly composed of a stator and a floater,and payloads are mounted on the floater.Sensing relative motion with respect to the stator fixed on the spacecraft,the floater is isolated from vibration on the stator via control forces and torques generated by electromagnetic actuators.This isolation results in a high-level microgravity environment.Before MAIS was launched into space,its control performance had been simulated on computers and tested by air-bearing platform levitation and aircraft parabolic flight.This article first presents an overview of the MAIS’s hardware system,particularly system structure,measurement sensors,and control actuators.Its system dynamics,state estimation,and control laws are then discussed,followed by the results of computer simulation and engineering tests,including the test of the six-degree-of-freedom motion by aircraft parabolic flight.Simulation and test results verify the accuracy of the control strategy design,effectiveness of the control algorithms,and performance of the entire control system,paving the way for operation of MAIS in space.This article also presents the steps recommended for the control performance simulation and tests of MAIS-like devices.These devices are expected to be used on China’s Space Station for various scientific experiments that require a high-level microgravity environment.