Nitrogen removal from synthetic wastewater was investigated in an airlift bioreactor (ALB), augmented with a novel heterotrophic nitrifier Pseudonocardia ammonioxydans H9^T under organic carbon to nitrogen ratios (...Nitrogen removal from synthetic wastewater was investigated in an airlift bioreactor (ALB), augmented with a novel heterotrophic nitrifier Pseudonocardia ammonioxydans H9^T under organic carbon to nitrogen ratios (Corg/N) ranging from 0 to 12. Effect of the inoculated strain was also determined on the settling properties and the removal of chemical oxygen demand (COD). Two laboratory scale reactors were set up to achieve a stable nitrifying state under the same physicochemical conditions of hydraulic retention time (HRT), temperature, pH and dissolved oxygen (DO), and operated under the sequencing batch mode. The level of DO was kept at 0.5- 1.5 mg/L by periodic stirring and aeration. Each specific Corg/N ratio was continued for duration of 3 weeks. One of the reactors (BR2) was inoculated with P ammonioxydans H9^T periodically at the start of each Corg/N ratio. Sludge volumetric index (SVI) improved with the increasing Corg/N ratio, but no significant difference was detected between the two reactors. BR2 showed higher levels of nitrogen removal with the increasing heterotrophic conditions, and the ammonia removal reached to the level of 82%-88%, up to10% higher than that in the control reactor (BR1) at Corg/N ratios higher than 6; however, the ammonia removal level in experimental reactor was up to 8% lower than that in control reactor at Corg/N ratios lower than 2. The COD removal efficiency progressively increased with the increasing Corg/N ratios in both of the reactors. The COD removal percentage up to peak values of 88%-94% in BR2, up to 11% higher than that in BR1 at Corg/N ratio higher than 4. The peak values of ammonia and COD removal almost coincided with the highest number (18%-27% to total bacterial number) of the exogenous bacterium in the BR2, detected as colony forming units (CFU). Furthermore, the removal of ammonia and COD in BR2 was closely related to the number of the inoculated strain with a coefficient index (R2) up to 0.82 and 0.85 for ammonia and 展开更多
A solution of 0.1 mol/L to 1.0 mol/L H2SO4 can dissolve alkali metals and alkaline earth metals which weaken an active site of SCR catalyst. The waste catalyst washed with 0.5 mol/L H2SO4 regained the best catalytic a...A solution of 0.1 mol/L to 1.0 mol/L H2SO4 can dissolve alkali metals and alkaline earth metals which weaken an active site of SCR catalyst. The waste catalyst washed with 0.5 mol/L H2SO4 regained the best catalytic activity. When a concentration of the sulfuric acid is less than 0.5 mol/L, sufficient cleaning effects cannot be obtained. In contrast, when the concentration is greater than 1.0 tool/L, the active components, vanadium and tungsten are undesirably eluted. The total BET surface of the catalyst regenerated by air lift loop reactor showed almost the same as that of fresh catalyst due to the removal of insoluble compounds which may be penetrated into pores of catalyst. The addition of a solution of 0.075 mol/L ammonium vanadate (NHnVO3) and 0.075 mol/L ammonium paratungstate (5(NH4)20· 12WO3-5H20) to 0.1 mol/L H2SO4 significantly increases the activity of the waste catalyst.展开更多
An air-lift has been more recently applied in the dredging, deep-seated beach placer mining and underground mining engineering. However, the influence and mechanism of various parameters on the air-lift performance ar...An air-lift has been more recently applied in the dredging, deep-seated beach placer mining and underground mining engineering. However, the influence and mechanism of various parameters on the air-lift performance are not quite clear, especially the influence of flow pattern on lifting efficiency. Focusing on the problems mentioned above, the key part of the air-lift (namely, the air injector) was proposed aimed to reduce friction loss in the inner pipe according to improving flow field performance, thus increase the lifting efficiency. The study of relative factors of the performance of an air-lift is performed and the river sand is used as simulation of underground ore bed. The total lifting height of the experimental system is 3 m, the water flux, mass flow of solid particles, concentration of particles and lifting efficiency are measured under the same submergence ratios by changing the air injector, which is divided into nine specifications of air injection in this research. The experimental results indicate that the optimal air flow rate corresponding to excellent performance of the air-lift can be obtained in the range of 35-40 m3/h. The air injection method has a great effect on the performance of the air-lift, the air injector with three nozzles is better than that in the case of one or two nozzles. Further more, the air injection angle and arrangement of air injection pipes also have great effect on the performance of an air-lift. The proposed research results have guiding significance for engineering application.展开更多
基金This work was supported by the National Natural Science Foundation of China (No. 30470024).
文摘Nitrogen removal from synthetic wastewater was investigated in an airlift bioreactor (ALB), augmented with a novel heterotrophic nitrifier Pseudonocardia ammonioxydans H9^T under organic carbon to nitrogen ratios (Corg/N) ranging from 0 to 12. Effect of the inoculated strain was also determined on the settling properties and the removal of chemical oxygen demand (COD). Two laboratory scale reactors were set up to achieve a stable nitrifying state under the same physicochemical conditions of hydraulic retention time (HRT), temperature, pH and dissolved oxygen (DO), and operated under the sequencing batch mode. The level of DO was kept at 0.5- 1.5 mg/L by periodic stirring and aeration. Each specific Corg/N ratio was continued for duration of 3 weeks. One of the reactors (BR2) was inoculated with P ammonioxydans H9^T periodically at the start of each Corg/N ratio. Sludge volumetric index (SVI) improved with the increasing Corg/N ratio, but no significant difference was detected between the two reactors. BR2 showed higher levels of nitrogen removal with the increasing heterotrophic conditions, and the ammonia removal reached to the level of 82%-88%, up to10% higher than that in the control reactor (BR1) at Corg/N ratios higher than 6; however, the ammonia removal level in experimental reactor was up to 8% lower than that in control reactor at Corg/N ratios lower than 2. The COD removal efficiency progressively increased with the increasing Corg/N ratios in both of the reactors. The COD removal percentage up to peak values of 88%-94% in BR2, up to 11% higher than that in BR1 at Corg/N ratio higher than 4. The peak values of ammonia and COD removal almost coincided with the highest number (18%-27% to total bacterial number) of the exogenous bacterium in the BR2, detected as colony forming units (CFU). Furthermore, the removal of ammonia and COD in BR2 was closely related to the number of the inoculated strain with a coefficient index (R2) up to 0.82 and 0.85 for ammonia and
基金Project(2009T100100602) supported by the Korea Institute of Energy Technology Evaluation and Planning,Korea
文摘A solution of 0.1 mol/L to 1.0 mol/L H2SO4 can dissolve alkali metals and alkaline earth metals which weaken an active site of SCR catalyst. The waste catalyst washed with 0.5 mol/L H2SO4 regained the best catalytic activity. When a concentration of the sulfuric acid is less than 0.5 mol/L, sufficient cleaning effects cannot be obtained. In contrast, when the concentration is greater than 1.0 tool/L, the active components, vanadium and tungsten are undesirably eluted. The total BET surface of the catalyst regenerated by air lift loop reactor showed almost the same as that of fresh catalyst due to the removal of insoluble compounds which may be penetrated into pores of catalyst. The addition of a solution of 0.075 mol/L ammonium vanadate (NHnVO3) and 0.075 mol/L ammonium paratungstate (5(NH4)20· 12WO3-5H20) to 0.1 mol/L H2SO4 significantly increases the activity of the waste catalyst.
基金supported by Ministry of Science and Technology of China (Grant No. 2008DFA70300)
文摘An air-lift has been more recently applied in the dredging, deep-seated beach placer mining and underground mining engineering. However, the influence and mechanism of various parameters on the air-lift performance are not quite clear, especially the influence of flow pattern on lifting efficiency. Focusing on the problems mentioned above, the key part of the air-lift (namely, the air injector) was proposed aimed to reduce friction loss in the inner pipe according to improving flow field performance, thus increase the lifting efficiency. The study of relative factors of the performance of an air-lift is performed and the river sand is used as simulation of underground ore bed. The total lifting height of the experimental system is 3 m, the water flux, mass flow of solid particles, concentration of particles and lifting efficiency are measured under the same submergence ratios by changing the air injector, which is divided into nine specifications of air injection in this research. The experimental results indicate that the optimal air flow rate corresponding to excellent performance of the air-lift can be obtained in the range of 35-40 m3/h. The air injection method has a great effect on the performance of the air-lift, the air injector with three nozzles is better than that in the case of one or two nozzles. Further more, the air injection angle and arrangement of air injection pipes also have great effect on the performance of an air-lift. The proposed research results have guiding significance for engineering application.