A computer vision approach through Open AI’s CLIP, a model capable of predicting text-image pairs, is used to create an AI agent for Dixit, a game which requires creative linking between images and text. This paper c...A computer vision approach through Open AI’s CLIP, a model capable of predicting text-image pairs, is used to create an AI agent for Dixit, a game which requires creative linking between images and text. This paper calculates baseline accuracies for both the ability to match the correct image to a hint and the ability to match up with human preferences. A dataset created by previous work on Dixit is used for testing. CLIP is utilized through the comparison of a hint to multiple images, and previous hints, achieving a final accuracy of 0.5011 which surpasses previous results.展开更多
This paper presents an innovative approach to enhance the querying capability of ChatGPT,a conversational artificial intelligence model,by incorporating voice-based interaction and a convolutional neural network(CNN)-...This paper presents an innovative approach to enhance the querying capability of ChatGPT,a conversational artificial intelligence model,by incorporating voice-based interaction and a convolutional neural network(CNN)-based impaired vision detection model.The proposed system aims to improve user experience and accessibility by allowing users to interact with ChatGPT using voice commands.Additionally,a CNN-based model is employed to detect impairments in user vision,enabling the system to adapt its responses and provide appropriate assistance.This research tackles head-on the challenges of user experience and inclusivity in artificial intelligence(AI).It underscores our commitment to overcoming these obstacles,making ChatGPT more accessible and valuable for a broader audience.The integration of voice-based interaction and impaired vision detection represents a novel approach to conversational AI.Notably,this innovation transcends novelty;it carries the potential to profoundly impact the lives of users,particularly those with visual impairments.The modular approach to system design ensures adaptability and scalability,critical for the practical implementation of these advancements.Crucially,the solution places the user at its core.Customizing responses for those with visual impairments demonstrates AI’s potential to not only understand but also accommodate individual needs and preferences.展开更多
Forest fires are a significant threat to the environment, causing ecological damage, economic losses, and posing a threat to human life. Hence, timely detection and prevention of forest fires are critical to minimizin...Forest fires are a significant threat to the environment, causing ecological damage, economic losses, and posing a threat to human life. Hence, timely detection and prevention of forest fires are critical to minimizing their impact. In this paper, we review the current state-of-the-art methods in forest fire detection and prevention using predictions based on weather conditions and predictions based on forest fire history. In particular, we discuss different Machine Learning (ML) models that have been used for forest fire detection. Further, we present the challenges faced when implementing the ML-based forest fire detection and prevention systems, such as data availability, model prediction errors and processing speed. Finally, we discuss how recent advances in Deep Learning (DL) can be utilized to improve the performance of current fire detection systems.展开更多
文摘A computer vision approach through Open AI’s CLIP, a model capable of predicting text-image pairs, is used to create an AI agent for Dixit, a game which requires creative linking between images and text. This paper calculates baseline accuracies for both the ability to match the correct image to a hint and the ability to match up with human preferences. A dataset created by previous work on Dixit is used for testing. CLIP is utilized through the comparison of a hint to multiple images, and previous hints, achieving a final accuracy of 0.5011 which surpasses previous results.
基金This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(Grant Number:IMSIU-RP23008).
文摘This paper presents an innovative approach to enhance the querying capability of ChatGPT,a conversational artificial intelligence model,by incorporating voice-based interaction and a convolutional neural network(CNN)-based impaired vision detection model.The proposed system aims to improve user experience and accessibility by allowing users to interact with ChatGPT using voice commands.Additionally,a CNN-based model is employed to detect impairments in user vision,enabling the system to adapt its responses and provide appropriate assistance.This research tackles head-on the challenges of user experience and inclusivity in artificial intelligence(AI).It underscores our commitment to overcoming these obstacles,making ChatGPT more accessible and valuable for a broader audience.The integration of voice-based interaction and impaired vision detection represents a novel approach to conversational AI.Notably,this innovation transcends novelty;it carries the potential to profoundly impact the lives of users,particularly those with visual impairments.The modular approach to system design ensures adaptability and scalability,critical for the practical implementation of these advancements.Crucially,the solution places the user at its core.Customizing responses for those with visual impairments demonstrates AI’s potential to not only understand but also accommodate individual needs and preferences.
文摘Forest fires are a significant threat to the environment, causing ecological damage, economic losses, and posing a threat to human life. Hence, timely detection and prevention of forest fires are critical to minimizing their impact. In this paper, we review the current state-of-the-art methods in forest fire detection and prevention using predictions based on weather conditions and predictions based on forest fire history. In particular, we discuss different Machine Learning (ML) models that have been used for forest fire detection. Further, we present the challenges faced when implementing the ML-based forest fire detection and prevention systems, such as data availability, model prediction errors and processing speed. Finally, we discuss how recent advances in Deep Learning (DL) can be utilized to improve the performance of current fire detection systems.