China’s grain yield increased from 1 t hain 1961 to 6 t hain 2015, while successfully feeding not only its large population but also supplying agricultural products all over the world. These achievements were greatly...China’s grain yield increased from 1 t hain 1961 to 6 t hain 2015, while successfully feeding not only its large population but also supplying agricultural products all over the world. These achievements were greatly supported by modern technology and distinct governmental policy. However, China’s grain production has been causing a number of problems mainly related to declining natural resources and a lack of environmental protection. Due to the growing population and changing dietary requirements, increasing food production must be achieved by increasing resource use efficiency while minimizing environmental costs. We propose two novel development pathways that can potentially sustain agricultural crop production in the next few decades:(i) enhancing nutrient use efficiency with zero increase in chemical fertilizer input until 2020 and(ii) concurrently increasing grain yield and nutrient use efficiency for sustainable intensification with integrated nutrient management after 2020. This paper provides a perspective on further agricultural developments and challenges, and useful knowledge of our valuable experiences for other developing countries.展开更多
For smooth and wide application of conservation agriculture(CA), remaining uncertainties about its impacts on crop yield need to be reduced. Based on previous field experiments in China, a meta-analysis was performed ...For smooth and wide application of conservation agriculture(CA), remaining uncertainties about its impacts on crop yield need to be reduced. Based on previous field experiments in China, a meta-analysis was performed to quantify the actual impacts of CA practices(NT: no/reduced-tillage only, CTSR: conventional tillage with straw retention, NTSR: NT with straw retention) on crop yields as compared to conventional tillage without straw retention(CT).Although CA practices increased crop yield by 4.6% on average, there were large variations in their impacts. For each CA practice, CTSR and NTSR significantly increased crop yield by 4.9%and 6.3%, respectively, compared to CT. However, no significant effect was found for NT. Among ecological areas, significant positive effects of CA practices were found in areas with an annual precipitation below 600 mm. Similar effects were found in areas with annual mean air temperature above 5 °C. For cropping regions, CA increased crop yield by 6.4% and 5.5%compared to CT in Northwest and South China, respectively, whereas no significant effects were found in the North China and Northeast China regions. Among crops, the positive effects of CA practices were significantly higher in maize(7.5%) and rice(4.1%) than in wheat(2.9%). NT likely decreased wheat yield. Our results indicate that there are great differences in the impacts of CA practices on crop yield, owing to regional variation in climate and crop types. CA will most likely increase maize yield but reduce wheat yield. It is strongly recommended to apply CA with crop straw retention in maize cropping areas and seasons with a warm and dry climate pattern.展开更多
基金supported by the National Basic Research Program of China(973 Program,2015CB150405)the China Postdoctoral Science Foundation Grant(2016M601177)
文摘China’s grain yield increased from 1 t hain 1961 to 6 t hain 2015, while successfully feeding not only its large population but also supplying agricultural products all over the world. These achievements were greatly supported by modern technology and distinct governmental policy. However, China’s grain production has been causing a number of problems mainly related to declining natural resources and a lack of environmental protection. Due to the growing population and changing dietary requirements, increasing food production must be achieved by increasing resource use efficiency while minimizing environmental costs. We propose two novel development pathways that can potentially sustain agricultural crop production in the next few decades:(i) enhancing nutrient use efficiency with zero increase in chemical fertilizer input until 2020 and(ii) concurrently increasing grain yield and nutrient use efficiency for sustainable intensification with integrated nutrient management after 2020. This paper provides a perspective on further agricultural developments and challenges, and useful knowledge of our valuable experiences for other developing countries.
基金jointly supported by the National Key Technology R&D Program of China(2011BAD16B14)the Natural Science Foundation of China(31201179)the Innovation Program of Chinese Academy of Agricultural Sciences
文摘For smooth and wide application of conservation agriculture(CA), remaining uncertainties about its impacts on crop yield need to be reduced. Based on previous field experiments in China, a meta-analysis was performed to quantify the actual impacts of CA practices(NT: no/reduced-tillage only, CTSR: conventional tillage with straw retention, NTSR: NT with straw retention) on crop yields as compared to conventional tillage without straw retention(CT).Although CA practices increased crop yield by 4.6% on average, there were large variations in their impacts. For each CA practice, CTSR and NTSR significantly increased crop yield by 4.9%and 6.3%, respectively, compared to CT. However, no significant effect was found for NT. Among ecological areas, significant positive effects of CA practices were found in areas with an annual precipitation below 600 mm. Similar effects were found in areas with annual mean air temperature above 5 °C. For cropping regions, CA increased crop yield by 6.4% and 5.5%compared to CT in Northwest and South China, respectively, whereas no significant effects were found in the North China and Northeast China regions. Among crops, the positive effects of CA practices were significantly higher in maize(7.5%) and rice(4.1%) than in wheat(2.9%). NT likely decreased wheat yield. Our results indicate that there are great differences in the impacts of CA practices on crop yield, owing to regional variation in climate and crop types. CA will most likely increase maize yield but reduce wheat yield. It is strongly recommended to apply CA with crop straw retention in maize cropping areas and seasons with a warm and dry climate pattern.