Riparian wetland is the major transition zone of matter, energy and information transfer between aquatic and terrestrial ecosystems and has important functions of water purification and non-point pollution control. Us...Riparian wetland is the major transition zone of matter, energy and information transfer between aquatic and terrestrial ecosystems and has important functions of water purification and non-point pollution control. Using the field experiment method and an isotope tracing technique, the agricultural non-point nitrogen pollution control function of different vegetation types in riparian wetland was studied in the Kouma Section of the Yellow River. The results showed that the retention of agricultural non-point nitrogen pollution by riparian wetland soil occurs mainly in top 0-10 cm layer. The amount of nitrogen retained by surface soils associated with three types of vegetation are 0.045 mg/g for Phragmites communis Trin Linn, 0.036 mg/g for Scirpus triqueter Linn, and 0.032 mg/g for Typha angustifolia Linn, which account for 59.21%, 56.25%, and 56.14% of the total nitrogen interception, respectively. Exogenous nitrogen in 0-10 cm soil layer changes more quickly than in other layers. One month after adding KISNO3 to the tested vegetation, nitrogen content was 77.78% for P communis Trin, 68.75% for T. angustifolia, and 8.33% for S. triqueter in the surface soil. After three months, nitrogen content was 93.33% for P. communis Trin, 72.22% for S. triqueter, and 37.50% for T. Angustifolia. There are large differences among vegetation communities respecting to purification of agricultural non-point nitrogen pollution. The nitrogen uptake amount decreases in the sequence: new shoots ofP. communis Trin (9.731 nag/g) 〉 old P. communis Trin (4.939 mg/g) 〉 S. triqueter (0.620 mg/g) 〉 T. angustifolia (0.186 mg/g). Observations indicated that the presence of riparian wetlands as buffers on and adjacent to stream banks could be recommended to control agricultural non-point pollution.展开更多
结合调查资料和地理信息系统(geographic information system,GIS)技术,采用Johnes经典输出系数模型估算2000、2005、2010、2015年清水河上游流域总氮(total nitrogen,TN)、总磷(total phosphorus,TP)农业非点源污染负荷,并分析其时空...结合调查资料和地理信息系统(geographic information system,GIS)技术,采用Johnes经典输出系数模型估算2000、2005、2010、2015年清水河上游流域总氮(total nitrogen,TN)、总磷(total phosphorus,TP)农业非点源污染负荷,并分析其时空变化特征和污染来源。结果表明:四个时期TN、TP的污染输出负荷均呈明显的下降趋势,且前者是后者的9.2~9.8倍;不同污染源类型对TN、TP负荷贡献率的影响规律相似,且土地利用是最关键的影响因素,表现为耕地>草地>林地。从空间变化趋势上,TN、TP的污染负荷强度分布特征相似:整体分布不均,高负荷区集中分布在清水河支流水系两岸坡度较小的平原和丘陵区,低负荷区主要分布在耕地较少的源头区,且TN的负荷强度是TP的10倍左右。分别从土地利用、禽畜养殖和农村生活等角度分析其污染来源,结果表明耕地,尤其是蔬菜等经济作物种植是农业非点源污染的主要来源,禽畜养殖及居民生活是非点源污染的重要组成部分。展开更多
非点源污染是影响水源地水质的重要原因。研究以丹江口库区五龙池小流域为研究区,基于2014年相关数据,利用输出系数模型,借助地理信息技术,对该小流域农业非点源污染进行模拟,分析流域非点源污染的空间分布特征,解析其主要污染源,以深...非点源污染是影响水源地水质的重要原因。研究以丹江口库区五龙池小流域为研究区,基于2014年相关数据,利用输出系数模型,借助地理信息技术,对该小流域农业非点源污染进行模拟,分析流域非点源污染的空间分布特征,解析其主要污染源,以深入理解丹江口水源地农业小流域的非点源输出特征。研究表明,2014年流域内农业非点源总氮污染负荷为5.674 t,流域内平均负荷强度为2.96 t km-2;农业非点源总氮负荷总量主要分布在耕地和居民地,农业用地是主要污染源,贡献率为47.9;人畜粪便农业非点源总氮负荷强度为39.2 t km-2,是流域平均负荷强度的13倍;缓坡区具有较高的非点源输出风险;改变粗放的农业管理模式,合理处理畜禽排泄物和农村生活污水是流域非点源治理的有效措施。展开更多
基金supported by the National Natural Sci- ence Foundation of China (No. 30570276)
文摘Riparian wetland is the major transition zone of matter, energy and information transfer between aquatic and terrestrial ecosystems and has important functions of water purification and non-point pollution control. Using the field experiment method and an isotope tracing technique, the agricultural non-point nitrogen pollution control function of different vegetation types in riparian wetland was studied in the Kouma Section of the Yellow River. The results showed that the retention of agricultural non-point nitrogen pollution by riparian wetland soil occurs mainly in top 0-10 cm layer. The amount of nitrogen retained by surface soils associated with three types of vegetation are 0.045 mg/g for Phragmites communis Trin Linn, 0.036 mg/g for Scirpus triqueter Linn, and 0.032 mg/g for Typha angustifolia Linn, which account for 59.21%, 56.25%, and 56.14% of the total nitrogen interception, respectively. Exogenous nitrogen in 0-10 cm soil layer changes more quickly than in other layers. One month after adding KISNO3 to the tested vegetation, nitrogen content was 77.78% for P communis Trin, 68.75% for T. angustifolia, and 8.33% for S. triqueter in the surface soil. After three months, nitrogen content was 93.33% for P. communis Trin, 72.22% for S. triqueter, and 37.50% for T. Angustifolia. There are large differences among vegetation communities respecting to purification of agricultural non-point nitrogen pollution. The nitrogen uptake amount decreases in the sequence: new shoots ofP. communis Trin (9.731 nag/g) 〉 old P. communis Trin (4.939 mg/g) 〉 S. triqueter (0.620 mg/g) 〉 T. angustifolia (0.186 mg/g). Observations indicated that the presence of riparian wetlands as buffers on and adjacent to stream banks could be recommended to control agricultural non-point pollution.
文摘结合调查资料和地理信息系统(geographic information system,GIS)技术,采用Johnes经典输出系数模型估算2000、2005、2010、2015年清水河上游流域总氮(total nitrogen,TN)、总磷(total phosphorus,TP)农业非点源污染负荷,并分析其时空变化特征和污染来源。结果表明:四个时期TN、TP的污染输出负荷均呈明显的下降趋势,且前者是后者的9.2~9.8倍;不同污染源类型对TN、TP负荷贡献率的影响规律相似,且土地利用是最关键的影响因素,表现为耕地>草地>林地。从空间变化趋势上,TN、TP的污染负荷强度分布特征相似:整体分布不均,高负荷区集中分布在清水河支流水系两岸坡度较小的平原和丘陵区,低负荷区主要分布在耕地较少的源头区,且TN的负荷强度是TP的10倍左右。分别从土地利用、禽畜养殖和农村生活等角度分析其污染来源,结果表明耕地,尤其是蔬菜等经济作物种植是农业非点源污染的主要来源,禽畜养殖及居民生活是非点源污染的重要组成部分。
文摘非点源污染是影响水源地水质的重要原因。研究以丹江口库区五龙池小流域为研究区,基于2014年相关数据,利用输出系数模型,借助地理信息技术,对该小流域农业非点源污染进行模拟,分析流域非点源污染的空间分布特征,解析其主要污染源,以深入理解丹江口水源地农业小流域的非点源输出特征。研究表明,2014年流域内农业非点源总氮污染负荷为5.674 t,流域内平均负荷强度为2.96 t km-2;农业非点源总氮负荷总量主要分布在耕地和居民地,农业用地是主要污染源,贡献率为47.9;人畜粪便农业非点源总氮负荷强度为39.2 t km-2,是流域平均负荷强度的13倍;缓坡区具有较高的非点源输出风险;改变粗放的农业管理模式,合理处理畜禽排泄物和农村生活污水是流域非点源治理的有效措施。