As stream data is being more frequently collected and analyzed, stream processing systems are faced with more design challenges. One challenge is to perform continuous window aggregation, which involves intensive comp...As stream data is being more frequently collected and analyzed, stream processing systems are faced with more design challenges. One challenge is to perform continuous window aggregation, which involves intensive computation. When there are a large number of aggregation queries, the system may suffer from scalability problems. The queries are usually similar and only differ in window specifications. In this paper, we propose collaborative aggregation which promotes aggregate sharing among the windows so that repeated aggregate operations can be avoided. Different from the previous approaches in which the aggregate sharing is restricted by the window pace, we generalize the aggregation over multiple values as a series of reductions. Therefore, the results generated by each reduction step can be shared. The sharing process is formalized in the feed semantics and we present the compose-and-declare framework to determine the data sharing logic at a very low cost. Experimental results show that our approach offers an order of magnitude performance improvement to the state-of-the-art results and has a small memory footprint.展开更多
In hybrid wireless sensor networks, sensor mobility causes the query areas to change dynamically. Aiming at the problem of inefficiency in processing the data aggregation queries in dynamic query areas, this paper pro...In hybrid wireless sensor networks, sensor mobility causes the query areas to change dynamically. Aiming at the problem of inefficiency in processing the data aggregation queries in dynamic query areas, this paper proposes a processing approach for event-based location aware queries (ELAQ), which includes query dissemination algorithm, maximum distance projection proxy selection algorithm, in-network query propagation, and aggregation algorithm. ELAQs are triggered by the events and the query results are dependent on mobile sensors' location, which are the characteristics of ELAQ model. The results show that compared with the TinyDB query processing approach, ELAQ processing approach increases the accuracy of the query result and decreases the query response time.展开更多
文摘联机分析处理OLAP(online analytical processing)查询作为一种复杂查询,当使用SQL(structured query language)语句来表述时,通常都包含多表连接和分组聚集操作,因此提高多表连接和分组聚集计算的性能就成为ROLAP(relational OLAP)查询处理的关键问题.提出一种基于分组序号的聚集算法MuGA(group number based aggregation with multi-table join),该方法充分考虑数据仓库星型模式的特点,将聚集操作和新的多表连接算法MJoin(multi-table join)相结合,使用分组序号进行分组聚集计算,代替通常的排序或者哈希计算,从而有效地减少CPU运算以及磁盘存取的开销.算法的实验数据表明,提出的MuGA算法与传统的关系数据库聚集查询处理方法以及改进后的基于排序的聚集算法相比,性能都有显著提高.
基金This work was supported by the National Natural Science Foundation of China under Grant No. 61173160, the National Basic Research 973 Program of China under Grant No. 2015CB358800, and the Scientific Research Program of the Higher Education Institution of Xinjiang Uygur Autonomous Region of China under Grant No. XJEDU2014S087.
文摘As stream data is being more frequently collected and analyzed, stream processing systems are faced with more design challenges. One challenge is to perform continuous window aggregation, which involves intensive computation. When there are a large number of aggregation queries, the system may suffer from scalability problems. The queries are usually similar and only differ in window specifications. In this paper, we propose collaborative aggregation which promotes aggregate sharing among the windows so that repeated aggregate operations can be avoided. Different from the previous approaches in which the aggregate sharing is restricted by the window pace, we generalize the aggregation over multiple values as a series of reductions. Therefore, the results generated by each reduction step can be shared. The sharing process is formalized in the feed semantics and we present the compose-and-declare framework to determine the data sharing logic at a very low cost. Experimental results show that our approach offers an order of magnitude performance improvement to the state-of-the-art results and has a small memory footprint.
基金Supported by the National Pre-research Foundation Project of China (513150402)
文摘In hybrid wireless sensor networks, sensor mobility causes the query areas to change dynamically. Aiming at the problem of inefficiency in processing the data aggregation queries in dynamic query areas, this paper proposes a processing approach for event-based location aware queries (ELAQ), which includes query dissemination algorithm, maximum distance projection proxy selection algorithm, in-network query propagation, and aggregation algorithm. ELAQs are triggered by the events and the query results are dependent on mobile sensors' location, which are the characteristics of ELAQ model. The results show that compared with the TinyDB query processing approach, ELAQ processing approach increases the accuracy of the query result and decreases the query response time.