随着光伏(photovoltaic, PV)发电渗透率的升高,光伏功率的随机波动将对电能质量与供电可靠性产生不利影响,而利用电动汽车入网(Vehicle to grid,V2G)技术下电动汽车(electric vehicles,EVs)充放电的灵活性来平抑光伏波动是一种经济、高...随着光伏(photovoltaic, PV)发电渗透率的升高,光伏功率的随机波动将对电能质量与供电可靠性产生不利影响,而利用电动汽车入网(Vehicle to grid,V2G)技术下电动汽车(electric vehicles,EVs)充放电的灵活性来平抑光伏波动是一种经济、高效的解决方式。为平抑短时剧烈的光伏功率波动,首先提出了微网场景下集群电动汽车参与平抑光伏波动的控制框架,然后建立了利用EV功率跟跟踪PV出力的凸优化模型,并从数学上不失一般性地证明了凸化的有效性。所提凸化方法对系统参数没有任何要求,在优化求解前无需做任何检验。所建立的凸优化模型在求解上更加高效,且在调度容量充足时跟踪误差可控,并能在一定程度上抑制EV的过充电与过放电。最后,通过算例验证了凸优化模型的准确性与高效性及所提调度策略的优势。展开更多
This paper aims to accurately identify parameters of the natural charging behavior characteristic(NCBC)for plug-in electric vehicles(PEVs) without measuring any data regarding charging request information of PEVs. To ...This paper aims to accurately identify parameters of the natural charging behavior characteristic(NCBC)for plug-in electric vehicles(PEVs) without measuring any data regarding charging request information of PEVs. To this end, a data-mining method is first proposed to extract the data of natural aggregated charging load(ACL) from the big data of aggregated residential load. Then, a theoretical model of ACL is derived based on the linear convolution theory. The NCBC-parameters are identified by using the mined ACL data and theoretical ACL model via the derived identification model. The proposed methodology is cost-effective and will not expose the privacy of PEVs as it does not need to install sub-metering systems to gather charging request information of each PEV. It is promising in designing unidirectional smart charging schemes which are attractive to power utilities. Case studies verify the feasibility and effectiveness of the proposed methodology.展开更多
文摘随着光伏(photovoltaic, PV)发电渗透率的升高,光伏功率的随机波动将对电能质量与供电可靠性产生不利影响,而利用电动汽车入网(Vehicle to grid,V2G)技术下电动汽车(electric vehicles,EVs)充放电的灵活性来平抑光伏波动是一种经济、高效的解决方式。为平抑短时剧烈的光伏功率波动,首先提出了微网场景下集群电动汽车参与平抑光伏波动的控制框架,然后建立了利用EV功率跟跟踪PV出力的凸优化模型,并从数学上不失一般性地证明了凸化的有效性。所提凸化方法对系统参数没有任何要求,在优化求解前无需做任何检验。所建立的凸优化模型在求解上更加高效,且在调度容量充足时跟踪误差可控,并能在一定程度上抑制EV的过充电与过放电。最后,通过算例验证了凸优化模型的准确性与高效性及所提调度策略的优势。
基金supported by the NSFCRCUK_EPSRC(No.51361130153)the National Natural Science Foundation of China(No.51377035)
文摘This paper aims to accurately identify parameters of the natural charging behavior characteristic(NCBC)for plug-in electric vehicles(PEVs) without measuring any data regarding charging request information of PEVs. To this end, a data-mining method is first proposed to extract the data of natural aggregated charging load(ACL) from the big data of aggregated residential load. Then, a theoretical model of ACL is derived based on the linear convolution theory. The NCBC-parameters are identified by using the mined ACL data and theoretical ACL model via the derived identification model. The proposed methodology is cost-effective and will not expose the privacy of PEVs as it does not need to install sub-metering systems to gather charging request information of each PEV. It is promising in designing unidirectional smart charging schemes which are attractive to power utilities. Case studies verify the feasibility and effectiveness of the proposed methodology.