The lower crustal xenolith of mafic two_pyroxene granulite (the majority) and hypersthene granulite in the Cenozoic basalt at Hannuoba have the characteristics of igneous blastic structure and granulite facies metamor...The lower crustal xenolith of mafic two_pyroxene granulite (the majority) and hypersthene granulite in the Cenozoic basalt at Hannuoba have the characteristics of igneous blastic structure and granulite facies metamorphic recrystallization. Study on the zircon chronology and REE geochemistry of granulite xenolith shows that the underplating of basic magma into the lower crust during late Mesozoic led to the formation of mafic accumulate, which further through metamorphism of granulite facies formed the high_density and high_velocity crustal bottom layer at the lower crust. This suggests that the underplating of mantle magma is the important way for the vertical overgrowth of continental crust since the Phanerozoic and provides new evidence for crust_mantle interaction.展开更多
SHRIMP U-Pb zircon 207 Pb/206 Pb ages were obtained from two drill cores from the basement of the Ordos Basin.A garnet-sillimanite-biotite-plagioclase gneiss(QI1-1) from the western Ordos Basin basement yielded an ave...SHRIMP U-Pb zircon 207 Pb/206 Pb ages were obtained from two drill cores from the basement of the Ordos Basin.A garnet-sillimanite-biotite-plagioclase gneiss(QI1-1) from the western Ordos Basin basement yielded an average age of 2031 10 Ma.Based on the mineral assemblages,the source material of the gneiss is speculated to be pelitic-felsic system.A gneissic two-mica granite(Long1-1) from the eastern Ordos Basin basement yielded an average age of 2035 10 Ma.The zircons from both samples exhibit magmatic growth pattern.The shapes of the zircons suggest that the zircons should crystallize from a granitic of felsic volcanic terrain.The ages and the characters of zircons are consisitent with the other researches in the Ordos Basin and indicate that the basement of the Ordos Basin had experienced an intensive magmatic epsode during the late Paleoproterozoic period.The date from this study suggest the possible existences of a Paleoproterozoic mobile tectonic belt in the region.The reconstruction of such a belt is critical for understanding the tectonomagmatic evolution of the western block of the North China Craton.展开更多
文摘The lower crustal xenolith of mafic two_pyroxene granulite (the majority) and hypersthene granulite in the Cenozoic basalt at Hannuoba have the characteristics of igneous blastic structure and granulite facies metamorphic recrystallization. Study on the zircon chronology and REE geochemistry of granulite xenolith shows that the underplating of basic magma into the lower crust during late Mesozoic led to the formation of mafic accumulate, which further through metamorphism of granulite facies formed the high_density and high_velocity crustal bottom layer at the lower crust. This suggests that the underplating of mantle magma is the important way for the vertical overgrowth of continental crust since the Phanerozoic and provides new evidence for crust_mantle interaction.
基金supported by the National Basic Research Program of China (2012CB416604 and 2012CB416603)the National Natural Science Foundation of China (91114204)
文摘SHRIMP U-Pb zircon 207 Pb/206 Pb ages were obtained from two drill cores from the basement of the Ordos Basin.A garnet-sillimanite-biotite-plagioclase gneiss(QI1-1) from the western Ordos Basin basement yielded an average age of 2031 10 Ma.Based on the mineral assemblages,the source material of the gneiss is speculated to be pelitic-felsic system.A gneissic two-mica granite(Long1-1) from the eastern Ordos Basin basement yielded an average age of 2035 10 Ma.The zircons from both samples exhibit magmatic growth pattern.The shapes of the zircons suggest that the zircons should crystallize from a granitic of felsic volcanic terrain.The ages and the characters of zircons are consisitent with the other researches in the Ordos Basin and indicate that the basement of the Ordos Basin had experienced an intensive magmatic epsode during the late Paleoproterozoic period.The date from this study suggest the possible existences of a Paleoproterozoic mobile tectonic belt in the region.The reconstruction of such a belt is critical for understanding the tectonomagmatic evolution of the western block of the North China Craton.