Pseudomonas aeruginosa causes severe and persistent infections in immune compromised individuals and cystic fibrosis sufferers. The infection is hard to eradi- cate as P. aeruginosa has developed strong resistance to ...Pseudomonas aeruginosa causes severe and persistent infections in immune compromised individuals and cystic fibrosis sufferers. The infection is hard to eradi- cate as P. aeruginosa has developed strong resistance to most conventional antibiotics. The problem is further compounded by the ability of the pathogen to form biofilm matrix, which provides bacterial cells a protected environment withstanding various stresses including antibiotics. Quorum sensing (QS), a cell density-based intercellular communication system, which plays a key role in regulation of the bacterial virulence and biofilm formation, could be a promising target for developing new strategies against P. aeruginosa infection. The QS network of P. aeruginosa is organized in a multi-layered hierarchy consisting of at least four interconnected signaling mechanisms. Evidence is accumulating that the QS regulatory network not only responds to bacte- rial population changes but also could react to envi- ronmental stress cues. This plasticity should be taken into consideration during exploration and development of anti-QS therapeutics.展开更多
Objective To isolate and characterize indigenous algicidal bacteria and their algae-lysing compounds active against Microcystis aeruginosa, strains TH1, TH2, and FACHB 905. Methods The bacteria were identified using t...Objective To isolate and characterize indigenous algicidal bacteria and their algae-lysing compounds active against Microcystis aeruginosa, strains TH1, TH2, and FACHB 905. Methods The bacteria were identified using the Biolog automated microbial identification system and 16S rDNA sequence analysis. The algae-lysing compounds were isolated and purified by silica gel column chromatography and reverse-phase high performance liquid chromatography. Their structures were confirmed by Nuclear Magnetic Resonance (NMR) and Fourier Transform infrared (FT-IR) spectroscopy. Algae-lysing activity was observed using microscopy. Results The algae-lysing bacterium LTH-2 isolated from Lake Taihu was identified as Serratia marcescens. Strain LTH-2 secreted a red pigment identified as prodigiosin (C20H25N30), which showed strong lytic activity with algal strains M. aeruginoso TH1, TH2, and FACHB 905 in a concentration-dependent manner. The 50% inhibitory concentration (ICs0) of prodigiosin with the algal strains was 4.8 (±0.4)×10^-2 μg/mL, 8.9 (±1.1)×10^-2μg/mL, and 1.7 (±0.1)×10^-1 μg/mL in 24 h, respectively. Conclusion The bacterium LTH-2 and its pigment related to damage of cell membranes. The bacterium for regulating blooms of harmful M. aeruginosa. had strong Microcystis-lysing activity probably LTH-2 and its red pigment are potentially useful展开更多
Objective: To investigate the effect of Qiguiyin Decoction (芪归银方, QGYD) on multidrug-resistant Pseudomonas aeruginosa infection in Sprague-Dawley (SD) rats. Methods: A pseudomonal infection model in SD rats ...Objective: To investigate the effect of Qiguiyin Decoction (芪归银方, QGYD) on multidrug-resistant Pseudomonas aeruginosa infection in Sprague-Dawley (SD) rats. Methods: A pseudomonal infection model in SD rats was established by injecting multidrug-resistant P. aeruginosa intraperitoneally. Infected rats were randomized into four groups treated with Pure water, QGYD, ceftazidime, or combined QGYD and ceftazidime. Blood samples were obtained from the abdominal aorta. Serum was then collected and analyzed by peptide array for immune responsiveness to multidrug-resistant beta-lactamase proteins, including Verona integronencoded metailo-beta-lactamase 1 (VIM-l), Sao Paulo metallo-beta-lactamase 1 (SPM-1), and Temoniera (TEMs). Blood levels of interleukin-113 (IL-113), interleukin-4 (IL-4), and interferon-γ (IFN-γ) were assessed by enzyme-linked immunosorbent assay. Results: QGYD enhanced antibody reactivity against VIM-1 [epitopes 7-11 and 36-40] and TEM-1 [epitopes 26-27, 52-55, and 66-70]. QGYD treatment restored the compromised antibody reactivity against VIM-1 [epitopes 53-54 and 56-58] and SPM-1 [epitopes 16-19 and 82-85] following pseudomonal infection. Serum levels of IL-113 and Thl/'l-h2 in the rats were significantly elevated following pseudomonal infection (P〈0.05 or P〈0.01). In contrast, QGYD and combination QGYD and ceftazidime treatment restored the elevated serum IL-1β and Thl/-rh2 levels to normal (P〉0.05). Conclusions: QGYD improves the immune response to pseudomonal infection in rats by stimulating the production of protective antibodies against drug-resistant proteins VIM-1, SPM-1, and TEM-1. In addition, it protects the immune system and maintains immune responsiveness by restoring IL-1β and Thl/Th2 levels.展开更多
Tega-numa (Lake Tega) is one of the eutrophic lakes in Japan. For the improvement of water quality in Lake Tega, the North- chiba Water Conveyance Channel was constructed in 2000, which transfer water from Tone Rive...Tega-numa (Lake Tega) is one of the eutrophic lakes in Japan. For the improvement of water quality in Lake Tega, the North- chiba Water Conveyance Channel was constructed in 2000, which transfer water from Tone River into the lake. After 2000, the dominant species of diatoms, mainly Cyclotella sp., have been replacing blue-green algae, mainly Microcystis aeruginosa in Lake Tega. This transition of dominant species would be due to the dilution, but the detail mechanism has not been understood yet. This study examined the relationship between phosphorus fluctuation caused by river water dilution to Lake Tega and dominance of algal species, M. aeruginosa or Cyclotella sp. based on the single-species and the mixed-species culture experiments. The single-species culture experiment showed that the half-saturation constant and uptake rate of phosphorus were one order lower and seven times higher for M. aeruginosa than those for Cyclotella sp. These findings implied that M. aeruginosa would possess a potential for the growth and survival over Cyclotella sp. in the phosphorus limited condition. The superiority of M. aeruginosa was reflected in the outcome of the mixed-species culture experiment, i.e., dominance of M. aeruginosa, even phosphorus concentration was lowered to 0.01 mg-P/L. Therefore, it could be concluded that the decrease in phosphorus concentration due to the river water dilution to Lake Tega would be interpreted as a minor factor for the transition of dominant species from M. aeruginosa to Cyclotella sp.展开更多
^ 15N isotope tracer techniques and ecological modeling were adopted to investigate the fractionation of nitrogen, its uptake and transformation in algae and snail (Bellamya aeruginosa Reeve). Different algal specie...^ 15N isotope tracer techniques and ecological modeling were adopted to investigate the fractionation of nitrogen, its uptake and transformation in algae and snail (Bellamya aeruginosa Reeve). Different algal species were found to differ in their uptake of nitrogen isotopes. Microcystis aeruginisa Ktitz. demonstrated the greatest ^15N accumulation capacity, with the natural variation in isotopic ratio (δ^15N) and the isotope fractionation factor (ε,‰) being the highest among the species investigated. The transformation and utilization of ^15N by snails differed depending on the specific algae consumed (highest for Chlorella pyrenoidosa Chick., lowest for M. aeruginisa). When snails was seeded in the experimental pond, the algae population structure changed significantly, and total algal biomass as well as the concentration of all nitrogen species decreased, causing an increase in water transparency. A model, incorporating several chemical and biological parameters, was developed to predict algal biomass in an aquatic system when snails was present. The data collected during this investigation indicated that the gastropods such as snails could significantly impact biological community and water quality of small water bodies, suggesting a role for biological control of noxious algal blooms associated with eutrophication.展开更多
Quorum sensing(QS) is cell communication that is widely used by bacterial pathogens to coordinate the expression of several collective traits, including the production of multiple virulence factors, biofilm formation,...Quorum sensing(QS) is cell communication that is widely used by bacterial pathogens to coordinate the expression of several collective traits, including the production of multiple virulence factors, biofilm formation, and swarming motility once a population threshold is reached. Several lines of evidence indicate that QS enhances virulence of bacterial pathogens in animal models as well as in human infections; however, its relative importance for bacterial pathogenesis is still incomplete. In this review, we discuss the present evidence from in vitro and in vivo experiments in animal models, as well as from clinical studies, that link QS systems with human infections. We focus on two major QS bacterial models, the opportunistic Gram negative bacteria Pseudomonas aeruginosa and the Gram positive Staphylococcus aureus, which are also two of the main agents responsible of nosocomial and wound infections. In addition, QS communication systems in other bacterial, eukaryotic pathogens, and even immune and cancer cells are also reviewed, and finally, the new approaches proposed to combat bacterial infections by the attenuation of their QS communication systems and virulence are also discussed.展开更多
基金This work was funded by the Biomedical Research Council, Agency for Science, Technology and Research (A'STAR), Singapore, and by the National Natural Science Foundation of China (Grant No. 31330002). We apologize to the scientists who made contributionsto the field, but their works have not been cited due to space limitations.
文摘Pseudomonas aeruginosa causes severe and persistent infections in immune compromised individuals and cystic fibrosis sufferers. The infection is hard to eradi- cate as P. aeruginosa has developed strong resistance to most conventional antibiotics. The problem is further compounded by the ability of the pathogen to form biofilm matrix, which provides bacterial cells a protected environment withstanding various stresses including antibiotics. Quorum sensing (QS), a cell density-based intercellular communication system, which plays a key role in regulation of the bacterial virulence and biofilm formation, could be a promising target for developing new strategies against P. aeruginosa infection. The QS network of P. aeruginosa is organized in a multi-layered hierarchy consisting of at least four interconnected signaling mechanisms. Evidence is accumulating that the QS regulatory network not only responds to bacte- rial population changes but also could react to envi- ronmental stress cues. This plasticity should be taken into consideration during exploration and development of anti-QS therapeutics.
基金supported by the National Science and Technology Major Project (2012ZX07101-005)the National Natural Science Foundation of China (30972440)Jiangsu Province Postgraduate Innovation Project (CX10B-087Z)
文摘Objective To isolate and characterize indigenous algicidal bacteria and their algae-lysing compounds active against Microcystis aeruginosa, strains TH1, TH2, and FACHB 905. Methods The bacteria were identified using the Biolog automated microbial identification system and 16S rDNA sequence analysis. The algae-lysing compounds were isolated and purified by silica gel column chromatography and reverse-phase high performance liquid chromatography. Their structures were confirmed by Nuclear Magnetic Resonance (NMR) and Fourier Transform infrared (FT-IR) spectroscopy. Algae-lysing activity was observed using microscopy. Results The algae-lysing bacterium LTH-2 isolated from Lake Taihu was identified as Serratia marcescens. Strain LTH-2 secreted a red pigment identified as prodigiosin (C20H25N30), which showed strong lytic activity with algal strains M. aeruginoso TH1, TH2, and FACHB 905 in a concentration-dependent manner. The 50% inhibitory concentration (ICs0) of prodigiosin with the algal strains was 4.8 (±0.4)×10^-2 μg/mL, 8.9 (±1.1)×10^-2μg/mL, and 1.7 (±0.1)×10^-1 μg/mL in 24 h, respectively. Conclusion The bacterium LTH-2 and its pigment related to damage of cell membranes. The bacterium for regulating blooms of harmful M. aeruginosa. had strong Microcystis-lysing activity probably LTH-2 and its red pigment are potentially useful
基金Supported by the Ministry of National Science and Technology Project "Significant New Drugs Creation"(No.2009ZX09103-415,2013ZX09102026)the National Natural Science Foundation of China(No.81102777)the Beijing Key Laboratory(No.bjszd003)
文摘Objective: To investigate the effect of Qiguiyin Decoction (芪归银方, QGYD) on multidrug-resistant Pseudomonas aeruginosa infection in Sprague-Dawley (SD) rats. Methods: A pseudomonal infection model in SD rats was established by injecting multidrug-resistant P. aeruginosa intraperitoneally. Infected rats were randomized into four groups treated with Pure water, QGYD, ceftazidime, or combined QGYD and ceftazidime. Blood samples were obtained from the abdominal aorta. Serum was then collected and analyzed by peptide array for immune responsiveness to multidrug-resistant beta-lactamase proteins, including Verona integronencoded metailo-beta-lactamase 1 (VIM-l), Sao Paulo metallo-beta-lactamase 1 (SPM-1), and Temoniera (TEMs). Blood levels of interleukin-113 (IL-113), interleukin-4 (IL-4), and interferon-γ (IFN-γ) were assessed by enzyme-linked immunosorbent assay. Results: QGYD enhanced antibody reactivity against VIM-1 [epitopes 7-11 and 36-40] and TEM-1 [epitopes 26-27, 52-55, and 66-70]. QGYD treatment restored the compromised antibody reactivity against VIM-1 [epitopes 53-54 and 56-58] and SPM-1 [epitopes 16-19 and 82-85] following pseudomonal infection. Serum levels of IL-113 and Thl/'l-h2 in the rats were significantly elevated following pseudomonal infection (P〈0.05 or P〈0.01). In contrast, QGYD and combination QGYD and ceftazidime treatment restored the elevated serum IL-1β and Thl/-rh2 levels to normal (P〉0.05). Conclusions: QGYD improves the immune response to pseudomonal infection in rats by stimulating the production of protective antibodies against drug-resistant proteins VIM-1, SPM-1, and TEM-1. In addition, it protects the immune system and maintains immune responsiveness by restoring IL-1β and Thl/Th2 levels.
文摘Tega-numa (Lake Tega) is one of the eutrophic lakes in Japan. For the improvement of water quality in Lake Tega, the North- chiba Water Conveyance Channel was constructed in 2000, which transfer water from Tone River into the lake. After 2000, the dominant species of diatoms, mainly Cyclotella sp., have been replacing blue-green algae, mainly Microcystis aeruginosa in Lake Tega. This transition of dominant species would be due to the dilution, but the detail mechanism has not been understood yet. This study examined the relationship between phosphorus fluctuation caused by river water dilution to Lake Tega and dominance of algal species, M. aeruginosa or Cyclotella sp. based on the single-species and the mixed-species culture experiments. The single-species culture experiment showed that the half-saturation constant and uptake rate of phosphorus were one order lower and seven times higher for M. aeruginosa than those for Cyclotella sp. These findings implied that M. aeruginosa would possess a potential for the growth and survival over Cyclotella sp. in the phosphorus limited condition. The superiority of M. aeruginosa was reflected in the outcome of the mixed-species culture experiment, i.e., dominance of M. aeruginosa, even phosphorus concentration was lowered to 0.01 mg-P/L. Therefore, it could be concluded that the decrease in phosphorus concentration due to the river water dilution to Lake Tega would be interpreted as a minor factor for the transition of dominant species from M. aeruginosa to Cyclotella sp.
基金supported by the National Natural Science Foundation of China (No.30870452)the National Chaohu Lake Special Project of China (No.2008ZX07103-005)
文摘^ 15N isotope tracer techniques and ecological modeling were adopted to investigate the fractionation of nitrogen, its uptake and transformation in algae and snail (Bellamya aeruginosa Reeve). Different algal species were found to differ in their uptake of nitrogen isotopes. Microcystis aeruginisa Ktitz. demonstrated the greatest ^15N accumulation capacity, with the natural variation in isotopic ratio (δ^15N) and the isotope fractionation factor (ε,‰) being the highest among the species investigated. The transformation and utilization of ^15N by snails differed depending on the specific algae consumed (highest for Chlorella pyrenoidosa Chick., lowest for M. aeruginisa). When snails was seeded in the experimental pond, the algae population structure changed significantly, and total algal biomass as well as the concentration of all nitrogen species decreased, causing an increase in water transparency. A model, incorporating several chemical and biological parameters, was developed to predict algal biomass in an aquatic system when snails was present. The data collected during this investigation indicated that the gastropods such as snails could significantly impact biological community and water quality of small water bodies, suggesting a role for biological control of noxious algal blooms associated with eutrophication.
基金Supported by JSPS grant Challenging Exploratory Research,No.25660062SEP-CONACyT grant,No.152794(García-Contreras R)+3 种基金Fideicomiso COLPOS 167304 and Programa Cátedras-CONACyT 2112(Castillo-Juárez)the Miguel Servet Program(C.H.U.A Coruña and ISCIII)(Tomás M)the CONACyT grant number 441393/269132(Mandujano-Tinoco EA)and the Biotechnology Endowed Chair at the Pennsylvania State University.
文摘Quorum sensing(QS) is cell communication that is widely used by bacterial pathogens to coordinate the expression of several collective traits, including the production of multiple virulence factors, biofilm formation, and swarming motility once a population threshold is reached. Several lines of evidence indicate that QS enhances virulence of bacterial pathogens in animal models as well as in human infections; however, its relative importance for bacterial pathogenesis is still incomplete. In this review, we discuss the present evidence from in vitro and in vivo experiments in animal models, as well as from clinical studies, that link QS systems with human infections. We focus on two major QS bacterial models, the opportunistic Gram negative bacteria Pseudomonas aeruginosa and the Gram positive Staphylococcus aureus, which are also two of the main agents responsible of nosocomial and wound infections. In addition, QS communication systems in other bacterial, eukaryotic pathogens, and even immune and cancer cells are also reviewed, and finally, the new approaches proposed to combat bacterial infections by the attenuation of their QS communication systems and virulence are also discussed.