排气温度是最能反映航空发动机运行状态的性能参数之一.对连续飞行班次的起飞排气温度裕度(EGTM,Exhaust Gas Temperature Margin)参数进行预测分析,有助于判知航空发动机将来的工作性能,为预防和排除故障提供充分的时间和决策依据.在...排气温度是最能反映航空发动机运行状态的性能参数之一.对连续飞行班次的起飞排气温度裕度(EGTM,Exhaust Gas Temperature Margin)参数进行预测分析,有助于判知航空发动机将来的工作性能,为预防和排除故障提供充分的时间和决策依据.在依据具有非线性、非平稳特征的起飞EGTM历史监测值序列构建预测模型时,基于奇异值分解滤波算法提出了一种联合径向基函数预测网络(RBFPN,Radial Basis Function Prediction Networks)和函数系数自回归模型(FAR,Functional-coefficient Auto Regressive model)的预测方案,充分发挥RBFPN和FAR在预测EGTM参数值变动趋势成分和随机成分的各自优势,使其互为补充,协同处理.实验结果表明该联合预测方案能够有效抑制RBFPN或FAR单独采用时所呈现出的不足,提高预测性能.展开更多
文摘排气温度是最能反映航空发动机运行状态的性能参数之一.对连续飞行班次的起飞排气温度裕度(EGTM,Exhaust Gas Temperature Margin)参数进行预测分析,有助于判知航空发动机将来的工作性能,为预防和排除故障提供充分的时间和决策依据.在依据具有非线性、非平稳特征的起飞EGTM历史监测值序列构建预测模型时,基于奇异值分解滤波算法提出了一种联合径向基函数预测网络(RBFPN,Radial Basis Function Prediction Networks)和函数系数自回归模型(FAR,Functional-coefficient Auto Regressive model)的预测方案,充分发挥RBFPN和FAR在预测EGTM参数值变动趋势成分和随机成分的各自优势,使其互为补充,协同处理.实验结果表明该联合预测方案能够有效抑制RBFPN或FAR单独采用时所呈现出的不足,提高预测性能.