The roughness increase on horizontal axis wind turbine(HAWT) blade surface,especially on the leading edge,can lead to an aerodynamic performance degradation of blade and power output loss of HAWT,so roughness sensitiv...The roughness increase on horizontal axis wind turbine(HAWT) blade surface,especially on the leading edge,can lead to an aerodynamic performance degradation of blade and power output loss of HAWT,so roughness sensitivity is an important factor for the HAWT blade design.However,there is no criterion for evaluating roughness sensitivity of blade currently.In this paper,the performance influences of airfoil aerodynamic parameters were analyzed by the blade element momentum(BEM) method and 1.5 MW wind turbine blade.It showed that airfoil lift coefficient was the key parameter to the power output and axial thrust of HAWT.Moreover,the evaluation indicators of roughness sensitivity for the different spanwise airfoils of the pitch-regulated HAWT blade were proposed.Those respectively were the lift-to-drag ratio and lift coefficient without feedback system,the maximum lift-to-drag ratio and design lift coefficient with feedback system for the airfoils at outboard section of blade,and lift coefficient without feedback,maximum lift coefficient with feedback for the airfoils at other sections under the pitch-fixed and variable-speed operation.It is not necessary to consider the roughness when HWAT can be regulated to the rated power output by the pitch-regulated and invariable-speed operation.展开更多
This paper presents a thorough study of the effect of the Constant Eddy Viscosity(CEV)assumption on the optimization of a discrete adjoint-based design optimization system.First,the algorithms of the adjoint methods w...This paper presents a thorough study of the effect of the Constant Eddy Viscosity(CEV)assumption on the optimization of a discrete adjoint-based design optimization system.First,the algorithms of the adjoint methods with and without the CEV assumption are presented,followed by a discussion of the two methods’solution stability.Second,the sensitivity accuracy,adjoint solution stability,and Root Mean Square(RMS)residual convergence rates at both design and offdesign operating points are compared between the CEV and full viscosity adjoint methods in detail.Finally,a multi-point steady aerodynamic and a multi-objective unsteady aerodynamic and aeroelastic coupled design optimizations are performed to study the impact of the CEV assumption on optimization.Two gradient-based optimizers,the Sequential Least-Square Quadratic Programming(SLSQP)method and Steepest Descent Method(SDM)are respectively used to draw a firm conclusion.The results from the transonic NASA Rotor 67 show that the CEV assumption can deteriorate RMS residual convergence rates and even lead to solution instability,especially at a near stall point.Compared with the steady cases,the effect of the CEV assumption on unsteady sensitivity accuracy is much stronger.Nevertheless,the CEV adjoint solver is still capable of achieving optimization goals to some extent,particularly if the flow under consideration is benign.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 50976117 and 50836006)
文摘The roughness increase on horizontal axis wind turbine(HAWT) blade surface,especially on the leading edge,can lead to an aerodynamic performance degradation of blade and power output loss of HAWT,so roughness sensitivity is an important factor for the HAWT blade design.However,there is no criterion for evaluating roughness sensitivity of blade currently.In this paper,the performance influences of airfoil aerodynamic parameters were analyzed by the blade element momentum(BEM) method and 1.5 MW wind turbine blade.It showed that airfoil lift coefficient was the key parameter to the power output and axial thrust of HAWT.Moreover,the evaluation indicators of roughness sensitivity for the different spanwise airfoils of the pitch-regulated HAWT blade were proposed.Those respectively were the lift-to-drag ratio and lift coefficient without feedback system,the maximum lift-to-drag ratio and design lift coefficient with feedback system for the airfoils at outboard section of blade,and lift coefficient without feedback,maximum lift coefficient with feedback for the airfoils at other sections under the pitch-fixed and variable-speed operation.It is not necessary to consider the roughness when HWAT can be regulated to the rated power output by the pitch-regulated and invariable-speed operation.
基金supported by the National Science and Technology Major Project,China(No.2017-II-0009-0023)China’s 111 project(No.B17037)sponsored by Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University,China.
文摘This paper presents a thorough study of the effect of the Constant Eddy Viscosity(CEV)assumption on the optimization of a discrete adjoint-based design optimization system.First,the algorithms of the adjoint methods with and without the CEV assumption are presented,followed by a discussion of the two methods’solution stability.Second,the sensitivity accuracy,adjoint solution stability,and Root Mean Square(RMS)residual convergence rates at both design and offdesign operating points are compared between the CEV and full viscosity adjoint methods in detail.Finally,a multi-point steady aerodynamic and a multi-objective unsteady aerodynamic and aeroelastic coupled design optimizations are performed to study the impact of the CEV assumption on optimization.Two gradient-based optimizers,the Sequential Least-Square Quadratic Programming(SLSQP)method and Steepest Descent Method(SDM)are respectively used to draw a firm conclusion.The results from the transonic NASA Rotor 67 show that the CEV assumption can deteriorate RMS residual convergence rates and even lead to solution instability,especially at a near stall point.Compared with the steady cases,the effect of the CEV assumption on unsteady sensitivity accuracy is much stronger.Nevertheless,the CEV adjoint solver is still capable of achieving optimization goals to some extent,particularly if the flow under consideration is benign.