This paper presents the design and manufacturing of a new morphing wing system carried out at the Laboratory of Applied Research in Active Controls, Avionics and AeroServoElasticity(LARCASE) at the ETS in Montréa...This paper presents the design and manufacturing of a new morphing wing system carried out at the Laboratory of Applied Research in Active Controls, Avionics and AeroServoElasticity(LARCASE) at the ETS in Montréal. This first version of a morphing wing allows the deformation of its trailing edge, denote by Morphing Trailing Edge(MTE). In order to characterize the technical impact of this deformation, we compare its performance with that of a rigid aileron by testing in the LARCASE’s price-Pa?doussis subsonic wind tunnel. The first set of results shows that it is possible to replace an aileron by a MTE on a wing, as an improvement was observed for the MTE aerodynamic performances with respect to the aileron aerodynamic performances.The improvement consisted in the fact that the drag coefficient was smaller, and the lift-to-drag ratio was higher for the same lift coefficient.展开更多
Previous studies on chordwise flexibility of flexible wings generally relied on simplified two-dimensional (2D) models. In the present study, we constructed a simplified three-dimensional (3D) model and identified...Previous studies on chordwise flexibility of flexible wings generally relied on simplified two-dimensional (2D) models. In the present study, we constructed a simplified three-dimensional (3D) model and identified the role of the chordwise flexibility in full flapping motion. This paper includes two parts, the first part discusses the aerodynamic effects of the chordwise flexibility in a typical hovering-flight case; the second part introduces a parametric study of four key parameters. The primary findings are as follows. Flexibility generally degrades the lift performance of the flexible wings. However, in two special cases, i.e. when stroke amplitude is low or pitch rotation is delayed, the flexible wings outperform their rigid counterparts in lift generation. Moreover, flexibility reduces the power consumption of the flexible wings. A wing with small flexibility generally achieves a marginally higher flapping efficiency than its rigid counterpart. Furthermore, reducing stroke amplitude can effectively improve the lift performance of the very flexible wings. Aerodynamic performances of the flexible wings are not as sensitive as the rigid wing to phase difference and mid-stroke angle of attaek. The effects of Re are the same for the flexible and rigid wings.展开更多
基金NSERC for the Canada Research Chair in Aircraft Modeling and Simulation New Technologies Funding
文摘This paper presents the design and manufacturing of a new morphing wing system carried out at the Laboratory of Applied Research in Active Controls, Avionics and AeroServoElasticity(LARCASE) at the ETS in Montréal. This first version of a morphing wing allows the deformation of its trailing edge, denote by Morphing Trailing Edge(MTE). In order to characterize the technical impact of this deformation, we compare its performance with that of a rigid aileron by testing in the LARCASE’s price-Pa?doussis subsonic wind tunnel. The first set of results shows that it is possible to replace an aileron by a MTE on a wing, as an improvement was observed for the MTE aerodynamic performances with respect to the aileron aerodynamic performances.The improvement consisted in the fact that the drag coefficient was smaller, and the lift-to-drag ratio was higher for the same lift coefficient.
文摘Previous studies on chordwise flexibility of flexible wings generally relied on simplified two-dimensional (2D) models. In the present study, we constructed a simplified three-dimensional (3D) model and identified the role of the chordwise flexibility in full flapping motion. This paper includes two parts, the first part discusses the aerodynamic effects of the chordwise flexibility in a typical hovering-flight case; the second part introduces a parametric study of four key parameters. The primary findings are as follows. Flexibility generally degrades the lift performance of the flexible wings. However, in two special cases, i.e. when stroke amplitude is low or pitch rotation is delayed, the flexible wings outperform their rigid counterparts in lift generation. Moreover, flexibility reduces the power consumption of the flexible wings. A wing with small flexibility generally achieves a marginally higher flapping efficiency than its rigid counterpart. Furthermore, reducing stroke amplitude can effectively improve the lift performance of the very flexible wings. Aerodynamic performances of the flexible wings are not as sensitive as the rigid wing to phase difference and mid-stroke angle of attaek. The effects of Re are the same for the flexible and rigid wings.