Flow control can effectively reduce the aerodynamic noise radiated from a circular cylinder. As one of the flow control methods, a bionic method, inspired by the serrations at the leading edge of owls' wing, was prop...Flow control can effectively reduce the aerodynamic noise radiated from a circular cylinder. As one of the flow control methods, a bionic method, inspired by the serrations at the leading edge of owls' wing, was proposed in this paper. The effects of bionic serrated structures arranged on the upper and lower sides of a cylinder on the aerodynamic and aeroacoustic performance of the cylinder were numerically investigated. At a free stream speed of 24.5 m.s-1, corresponding to Reynolds number of 1.58 × 10^4, the simulation results indicate that the bionic serrated structures can decrease the frequency of the vortex shedding and control the fluctuating aerodynamic force acting on the cylinder, thus reduce the aerodynamic noise. A qualitative view of the vorticity in the wake of the cylinder suggest that the serrated structures reduce aerodynamic sound by suppressing the unsteady motion of vortices.展开更多
基金Tile authors gratefully acknowledge the support of the National Natural Science Foundation of China (Grant No.31071928), NSFC Projects of Joint fund of high-speed Train Basic Research (Grant No. U1134109), NSFC Projects of International Cooperation and Exchanges (Grant No. 50920105504), and the Youth Research Foundation of the Jilin University Agronomy Faculty (Grant No. 4305050102k7).
文摘Flow control can effectively reduce the aerodynamic noise radiated from a circular cylinder. As one of the flow control methods, a bionic method, inspired by the serrations at the leading edge of owls' wing, was proposed in this paper. The effects of bionic serrated structures arranged on the upper and lower sides of a cylinder on the aerodynamic and aeroacoustic performance of the cylinder were numerically investigated. At a free stream speed of 24.5 m.s-1, corresponding to Reynolds number of 1.58 × 10^4, the simulation results indicate that the bionic serrated structures can decrease the frequency of the vortex shedding and control the fluctuating aerodynamic force acting on the cylinder, thus reduce the aerodynamic noise. A qualitative view of the vorticity in the wake of the cylinder suggest that the serrated structures reduce aerodynamic sound by suppressing the unsteady motion of vortices.