The durability of cement-based materials is related to water transport and storage in their pore network under different humidity conditions.To understand the mechanism and characteristics of water adsorption and deso...The durability of cement-based materials is related to water transport and storage in their pore network under different humidity conditions.To understand the mechanism and characteristics of water adsorption and desorption processes from the microscopic scale,this study introduces different points of view for the pore space model generation and numerical simulation of water transport by considering the“ink-bottle”effect.On the basis of the pore structure parameters(i.e.,pore size distribution and porosity)of cement paste and mortar with water-binder ratios of 0.3,0.4 and 0.5 obtained via mercury intrusion porosimetry,randomly formed 3D pore space models are generated using two-phase transformation on Gaussian random fields and verified via image analysis method of mathematical morphology.Considering the Kelvin-Laplace equation and the influence of“ink-bottle”pores,two numerical calculation scenarios based on mathematical morphology are proposed and applied to the generated model to simulate the adsorption-desorption process.The simulated adsorption and desorption curves are close to those of the experiment,verifying the effectiveness of the developed model and methods.The obtained results characterize water transport in cement-based materials during the variation of relative humidity and further explain the hysteresis effect due to“ink-bottle”pores from the microscopic scale.展开更多
Metal oxide/hydroxide-based nanocomposite adsorbents with porous supporting matrices have been recognized as efficient adsorbents for phosphorus recovery.Aiming at satisfying increasingly restrictive environmental req...Metal oxide/hydroxide-based nanocomposite adsorbents with porous supporting matrices have been recognized as efficient adsorbents for phosphorus recovery.Aiming at satisfying increasingly restrictive environmental requirements involving improving metal site utilization and lowering metal leakage risk,a glycol-solvothermal confined-space synthesis strategy was proposed for the fabrication of Fe OOH/anion exchanger nanocomposites(Fe/900s)with enhanced metal site utilization and reduced metal leakage risk.Compared to composites prepared using alkaline precipitation methods,Fe/900s performed comparably,with a high adsorption capacity of 19.05 mg-P/g with an initial concentration of 10 mg-P/L,a high adsorption selectivity of 8.2 mg-P/g in the presence of 500 mg-SO_(4)^(2-)/L,and high long-term resilience(with a capacity loss of~14%after five cycles),along with substantially lower Fe loading amount(4.11 wt.%)and Fe leakage percentage.Mechanistic investigation demonstrated that contribution of the specific Fe OOH sites to phosphate adsorption increased substantially(up to 50.97%under the optimal conditions),in which Fe(Ⅲ)-OH was the dominant efficient species.The side effects of an excessively long reaction time,which included quaternary ammonium decomposition,Fe OOH aggregation,and Fe(Ⅲ)reduction,were discussed as guidance for optimizing the synthesis strategy.The glycol-solvothermal strategy provides a facile solution to environmental problems through nanocrystal growth engineering in a confined space.展开更多
Although small in size, PM25 can do great harm to the environment, and city greening trees can reduce PM2.5 pollution to a certain extent. This paper reviewed the mechanism of city greening trees to reduce PM2.5 pollu...Although small in size, PM25 can do great harm to the environment, and city greening trees can reduce PM2.5 pollution to a certain extent. This paper reviewed the mechanism of city greening trees to reduce PM2.5 pollution, screening and classification of green land allocation model of PM2.5 reducing greening trees, and made prospect on how to construct the evaluation index system of PM2.5 re- ducing greening trees and urban green land allocation.展开更多
基金supported in part by“The National Natural Science Foundation of China (No.52168038)”“Applied Basic Research Foundation of Yunnan Province (No.2019FD125)”“Applied Basic Research Foundation of Yunnan Province (No.202201AT070159)”.
文摘The durability of cement-based materials is related to water transport and storage in their pore network under different humidity conditions.To understand the mechanism and characteristics of water adsorption and desorption processes from the microscopic scale,this study introduces different points of view for the pore space model generation and numerical simulation of water transport by considering the“ink-bottle”effect.On the basis of the pore structure parameters(i.e.,pore size distribution and porosity)of cement paste and mortar with water-binder ratios of 0.3,0.4 and 0.5 obtained via mercury intrusion porosimetry,randomly formed 3D pore space models are generated using two-phase transformation on Gaussian random fields and verified via image analysis method of mathematical morphology.Considering the Kelvin-Laplace equation and the influence of“ink-bottle”pores,two numerical calculation scenarios based on mathematical morphology are proposed and applied to the generated model to simulate the adsorption-desorption process.The simulated adsorption and desorption curves are close to those of the experiment,verifying the effectiveness of the developed model and methods.The obtained results characterize water transport in cement-based materials during the variation of relative humidity and further explain the hysteresis effect due to“ink-bottle”pores from the microscopic scale.
基金National Natural Science Foundation of China(52202076)Youth Innovation Promotion Association CAS(2023261)Shanghai“Super Postdoctoral Fellow”Incentive Program(2020474)。
基金supported by the National Natural Science Foundation of China(Nos.52070100,51978341,52081330506,and 52011530433)the Natural Science Foundation of Jiangsu Province of China(No.BK20190087)+1 种基金the Foundation of Jiangsu Collaborative Innovation Center of Biomedical Functional Materialsa project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Metal oxide/hydroxide-based nanocomposite adsorbents with porous supporting matrices have been recognized as efficient adsorbents for phosphorus recovery.Aiming at satisfying increasingly restrictive environmental requirements involving improving metal site utilization and lowering metal leakage risk,a glycol-solvothermal confined-space synthesis strategy was proposed for the fabrication of Fe OOH/anion exchanger nanocomposites(Fe/900s)with enhanced metal site utilization and reduced metal leakage risk.Compared to composites prepared using alkaline precipitation methods,Fe/900s performed comparably,with a high adsorption capacity of 19.05 mg-P/g with an initial concentration of 10 mg-P/L,a high adsorption selectivity of 8.2 mg-P/g in the presence of 500 mg-SO_(4)^(2-)/L,and high long-term resilience(with a capacity loss of~14%after five cycles),along with substantially lower Fe loading amount(4.11 wt.%)and Fe leakage percentage.Mechanistic investigation demonstrated that contribution of the specific Fe OOH sites to phosphate adsorption increased substantially(up to 50.97%under the optimal conditions),in which Fe(Ⅲ)-OH was the dominant efficient species.The side effects of an excessively long reaction time,which included quaternary ammonium decomposition,Fe OOH aggregation,and Fe(Ⅲ)reduction,were discussed as guidance for optimizing the synthesis strategy.The glycol-solvothermal strategy provides a facile solution to environmental problems through nanocrystal growth engineering in a confined space.
基金Supported by the Planning Project for the Practical Creativity Training for College Students of Institution of Higher Education of Jiangsu Province in 2014(Sujiaobangao[2014]No.8)the Science and Technology Planning Project of Nantong City(HS2014025)+2 种基金the First Micro-financial Support Project for Ecological Construction of Nantong City(Tonghuan[2014]No.33)the Project for Venture Philanthropy of Nantong City(Tuantongweilian[2015]No.D11)the Crosswise Project of Jiangsu Misho Ecological Landscape Co.,Ltd~~
文摘Although small in size, PM25 can do great harm to the environment, and city greening trees can reduce PM2.5 pollution to a certain extent. This paper reviewed the mechanism of city greening trees to reduce PM2.5 pollution, screening and classification of green land allocation model of PM2.5 reducing greening trees, and made prospect on how to construct the evaluation index system of PM2.5 re- ducing greening trees and urban green land allocation.