The goal of tomography is to reconstruct a spatially-varying image function s(x,m), where x is position and m is a finite-length vector of parameters. Many reconstruction methods minimize the total L2 error E ≡ eTe, ...The goal of tomography is to reconstruct a spatially-varying image function s(x,m), where x is position and m is a finite-length vector of parameters. Many reconstruction methods minimize the total L2 error E ≡ eTe, where individual errors ei quantify misfit between predictions and observations, to quantify goodness of fit. So-called adjoint state methods allow the gradient ∂E/∂mi to be computed extremely efficiently from an adjoint field, facilitating image reconstruction by gradient-descent methods. We examine the structure of the differential equation for the adjoint field under the ray approximation and find that it has the same form as the transport equation, whose solution involves the well-known geometrical spreading function R Consequently, as R is routinely tabulated as part of a ray calculation, no extra work is needed to compute the adjoint field, permitting a rapid calculation of the gradient?∂E/∂mi.展开更多
Constructing sophisticated refractivity models is one of the key problems for the RFC(refractivity from clutter)technology. If prior knowledge of the local refractivity environment is available, more accurate paramete...Constructing sophisticated refractivity models is one of the key problems for the RFC(refractivity from clutter)technology. If prior knowledge of the local refractivity environment is available, more accurate parameterized model can be constructed from the statistical information, which in turn can be used to improve the quality of the local refractivity retrievals. The validity of this proposal was demonstrated by range-dependent refractivity profile inversions using the adjoint parabolic equation method to the Wallops’ 98 experimental data.展开更多
Traditional geoacoustic inversions are generally solved by matched-field processing in combination with metaheuristic global searching algorithms which usually need massive computations. This paper proposes a new phys...Traditional geoacoustic inversions are generally solved by matched-field processing in combination with metaheuristic global searching algorithms which usually need massive computations. This paper proposes a new physical framework for geoacoustic retrievals. A parabolic approximation of wave equation with non-local boundary condition is used as the forward propagation model. The expressions of the corresponding tangent linear model and the adjoint operator are derived, respectively, by variational method. The analytical expressions for the gradient of the cost function with respect to the control variables can be formulated by the adjoint operator, which in turn can be used for optimization by the gradient-based method.展开更多
In order to decrease the fluid drag on an underwater robot manipulator, an optimal trajectory method based on the variational method is presented. By introducing the adjoint variables, which are Lagrange multipliers, ...In order to decrease the fluid drag on an underwater robot manipulator, an optimal trajectory method based on the variational method is presented. By introducing the adjoint variables, which are Lagrange multipliers, we formulate a Lagrange function under certain constraints related to the target angle, target angular velocity, and dynamic equation of the robot manipulator. The state equation (the partial differentiation of the Lagrange function with respect to the state variables), adjoint equation (the partial differentiation of the Lagrange function with respect to the adjoint variables), and sensitivity equation (the partial differentiation of the Lagrange function with respect to torques) can be derived from the stationary conditions of the Lagrange function. Using the state equation, we can calculate the state variables (angles, angular velocities, and angular acceleration) at every time step in the forward time direction. These state variables are stored as data at every time step. Next, by using the adjoint equation, we can calculate the adjoint variables by using these state variables at every time step in the backward time direction. These adjoint variables are stored as data at every time step. Third, the sensitivity equation is calculated by using both the state variables and the adjoint variables. Finally, the optimal trajectory of the manipulator is obtained using the sensitivities. The proposed method is applied to the problem of two-link manipulators. It can obtain the optimal drag reduction trajectory of the manipulator under the constraints mentioned above.展开更多
This study develops a direct optimal growth algorithm for three-dimensional transient growth analysis of perturbations in channel flows which are globally stable but locally unstable. Different from traditional non-mo...This study develops a direct optimal growth algorithm for three-dimensional transient growth analysis of perturbations in channel flows which are globally stable but locally unstable. Different from traditional non-modal methods based on the Orr- Somrnerfeld and Squire (OSS) equations that assume simple base flows, this algorithm can be applied to arbitrarily complex base flows. In the proposed algorithm, a re- orthogonalization Arnoldi method is used to improve orthogonality of the orthogonal basis of the Krylov subspace generated by solving the linearized forward and adjoint Navier-Stokes (N-S) equations. The linearized adjoint N-S equations with the specific boundary conditions for the channel are derived, and a new convergence criterion is pro- posed. The algorithm is then applied to a one-dimensional base flow (the plane Poiseuille flow) and a two-dimensional base flow (the plane Poiseuille flow with a low-speed streak) in a channel. For one-dimensional cases, the effects of the spanwise width of the chan- nel and the Reynolds number on the transient growth of perturbations are studied. For two-dimensional cases, the effect of strength of initial low-speed streak is discussed. The presence of the streak in the plane Poiseuille flow leads to a larger and quicker growth of the perturbations than that in the one-dimensional case. For both cases, the results show that an optimal flow field leading to the largest growth of perturbations is character- ized by high- and low-speed streaks and the corresponding streamwise vortical structures. The lift-up mechanism that induces the transient growth of perturbations is discussed. The performance of the re-orthogonalization Arnoldi technique in the algorithm for both one- and two-dimensional base flows is demonstrated, and the algorithm is validated by comparing the results with those obtained from the OSS equations method and the cross- check method.展开更多
The nonlinear two-point boundary value problem(TPBVP)is converted to a new form of the problem including integral terms.Then the combination of weak-form integral equation method(WFIEM)and special functions create a r...The nonlinear two-point boundary value problem(TPBVP)is converted to a new form of the problem including integral terms.Then the combination of weak-form integral equation method(WFIEM)and special functions create a robust and applicable numerical scheme to solve the problem.To display the accuracy of our method,some examples are investigated.Also,the fractional Boussinesq-like equation involving the β-derivative has been considered that describes the propagation of small amplitude long capillary-gravity waves on the surface of shallow water.展开更多
文摘The goal of tomography is to reconstruct a spatially-varying image function s(x,m), where x is position and m is a finite-length vector of parameters. Many reconstruction methods minimize the total L2 error E ≡ eTe, where individual errors ei quantify misfit between predictions and observations, to quantify goodness of fit. So-called adjoint state methods allow the gradient ∂E/∂mi to be computed extremely efficiently from an adjoint field, facilitating image reconstruction by gradient-descent methods. We examine the structure of the differential equation for the adjoint field under the ray approximation and find that it has the same form as the transport equation, whose solution involves the well-known geometrical spreading function R Consequently, as R is routinely tabulated as part of a ray calculation, no extra work is needed to compute the adjoint field, permitting a rapid calculation of the gradient?∂E/∂mi.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.41775027 and 41405025)
文摘Constructing sophisticated refractivity models is one of the key problems for the RFC(refractivity from clutter)technology. If prior knowledge of the local refractivity environment is available, more accurate parameterized model can be constructed from the statistical information, which in turn can be used to improve the quality of the local refractivity retrievals. The validity of this proposal was demonstrated by range-dependent refractivity profile inversions using the adjoint parabolic equation method to the Wallops’ 98 experimental data.
基金Project supported by the Foundation of Key Laboratory of Marine Intelligent Equipment and System of Ministry of Education,China(Grant No.SJTUMIES1908)the National Natural Science Foundation of China(Grant No.41775027)
文摘Traditional geoacoustic inversions are generally solved by matched-field processing in combination with metaheuristic global searching algorithms which usually need massive computations. This paper proposes a new physical framework for geoacoustic retrievals. A parabolic approximation of wave equation with non-local boundary condition is used as the forward propagation model. The expressions of the corresponding tangent linear model and the adjoint operator are derived, respectively, by variational method. The analytical expressions for the gradient of the cost function with respect to the control variables can be formulated by the adjoint operator, which in turn can be used for optimization by the gradient-based method.
文摘In order to decrease the fluid drag on an underwater robot manipulator, an optimal trajectory method based on the variational method is presented. By introducing the adjoint variables, which are Lagrange multipliers, we formulate a Lagrange function under certain constraints related to the target angle, target angular velocity, and dynamic equation of the robot manipulator. The state equation (the partial differentiation of the Lagrange function with respect to the state variables), adjoint equation (the partial differentiation of the Lagrange function with respect to the adjoint variables), and sensitivity equation (the partial differentiation of the Lagrange function with respect to torques) can be derived from the stationary conditions of the Lagrange function. Using the state equation, we can calculate the state variables (angles, angular velocities, and angular acceleration) at every time step in the forward time direction. These state variables are stored as data at every time step. Next, by using the adjoint equation, we can calculate the adjoint variables by using these state variables at every time step in the backward time direction. These adjoint variables are stored as data at every time step. Third, the sensitivity equation is calculated by using both the state variables and the adjoint variables. Finally, the optimal trajectory of the manipulator is obtained using the sensitivities. The proposed method is applied to the problem of two-link manipulators. It can obtain the optimal drag reduction trajectory of the manipulator under the constraints mentioned above.
基金supported by the National Natural Science Foundation of China(No.11372140)
文摘This study develops a direct optimal growth algorithm for three-dimensional transient growth analysis of perturbations in channel flows which are globally stable but locally unstable. Different from traditional non-modal methods based on the Orr- Somrnerfeld and Squire (OSS) equations that assume simple base flows, this algorithm can be applied to arbitrarily complex base flows. In the proposed algorithm, a re- orthogonalization Arnoldi method is used to improve orthogonality of the orthogonal basis of the Krylov subspace generated by solving the linearized forward and adjoint Navier-Stokes (N-S) equations. The linearized adjoint N-S equations with the specific boundary conditions for the channel are derived, and a new convergence criterion is pro- posed. The algorithm is then applied to a one-dimensional base flow (the plane Poiseuille flow) and a two-dimensional base flow (the plane Poiseuille flow with a low-speed streak) in a channel. For one-dimensional cases, the effects of the spanwise width of the chan- nel and the Reynolds number on the transient growth of perturbations are studied. For two-dimensional cases, the effect of strength of initial low-speed streak is discussed. The presence of the streak in the plane Poiseuille flow leads to a larger and quicker growth of the perturbations than that in the one-dimensional case. For both cases, the results show that an optimal flow field leading to the largest growth of perturbations is character- ized by high- and low-speed streaks and the corresponding streamwise vortical structures. The lift-up mechanism that induces the transient growth of perturbations is discussed. The performance of the re-orthogonalization Arnoldi technique in the algorithm for both one- and two-dimensional base flows is demonstrated, and the algorithm is validated by comparing the results with those obtained from the OSS equations method and the cross- check method.
文摘The nonlinear two-point boundary value problem(TPBVP)is converted to a new form of the problem including integral terms.Then the combination of weak-form integral equation method(WFIEM)and special functions create a robust and applicable numerical scheme to solve the problem.To display the accuracy of our method,some examples are investigated.Also,the fractional Boussinesq-like equation involving the β-derivative has been considered that describes the propagation of small amplitude long capillary-gravity waves on the surface of shallow water.