We develop a two dimensional model of a vesicle adhered on a curved substrate via long-range molecular interactions while subjected to a detachment force. The relationship between the force and displacement of the ves...We develop a two dimensional model of a vesicle adhered on a curved substrate via long-range molecular interactions while subjected to a detachment force. The relationship between the force and displacement of the vesicle is investigated as a function of the substrate shape. It is shown that both the force- displacement relationship and the maximum force at pull-off are significantly dependent on the substrate shape. The results suggest that probes with different tip shapes may be designed for cell manipulation. For example, we demonstrate that a vesicle can be pulled off a fiat surface using a probe with a curved tip.展开更多
With the rapid development of Micro-Electro-Mechanical System(MEMS),we enter a field in which the surface effects have dominated many of the micro-scale phenomena,and the adhesive contact is one of the focuses.In this...With the rapid development of Micro-Electro-Mechanical System(MEMS),we enter a field in which the surface effects have dominated many of the micro-scale phenomena,and the adhesive contact is one of the focuses.In this paper,a feasible model for finite element computation is presented via a macroscopic and microscopic combination approach,in which the adhesive forces are simulated by some non-linear spring elements considering the softening stage.Two basic problems concerning the adhesion effect were considered;through specific quantitative analysis,the results show a consistency with the current elastic continuum theories of adhesion and a brief investigation into the effects of adhesion on plastic deformation and tangential contact will be carried out as well.展开更多
The classical adhesive contact models belong to isothermal adhesion theories,where the effect of temperature on adhesion was neglected.However,a number of experimental results indicated that the adhesion behaviors can...The classical adhesive contact models belong to isothermal adhesion theories,where the effect of temperature on adhesion was neglected.However,a number of experimental results indicated that the adhesion behaviors can be significantly affected by temperature.In this paper,the two-dimensional non-slipping anisothermal adhesion behaviors between two orthotropic elastic cylinders are investigated within the framework of the Johnson-Kendall-Roberts theory.The stated problem is reduced to the coupled singular integral equations by virtue of the Fourier integral transform,which are solved analytically with the analytical function theory.The closed-form solutions for the stress fields in the presence of thermoelastic effect are obtained.The stable equilibrium state of contact system is determined by virtue of the Griffith energy balance.The effect of temperature difference on adhesion behaviors between orthotropic solids is discussed.It is found that the difference between the oscillatory and non-oscillatory solutions increases with increasing the degree of anisotropy of orthotropic materials.The oscillatory solution cannot be well approximated by the non-oscillatory solution for the orthotropic materials with relatively high anisotropy.展开更多
Adhesion has been demonstrated to play an important role in contact and friction between objects at small scales. While various models have been established for adhesive contact under normal forces, studies on the adh...Adhesion has been demonstrated to play an important role in contact and friction between objects at small scales. While various models have been established for adhesive contact under normal forces, studies on the adhesive contact under tangential force have been far fewer, which if any, are mostly confined to the non-slipping situations. In the present work, a model has been proposed for adhesive contact with local sliding under tangential forces. Herein, the onset of local sliding in adhesive contact has been addressed by assuming the nucleation of dislocations. By analogy with the emission of dislocations at a crack tip, the critical tangential force for the onset of sliding has been determined, and its effect on the evolution of contact size has also been studied. Comparison with relevant experiments has verified the validity of the present model.展开更多
The deformation behavior and the contact area of conductive particles in anisotropically conductive adhesives (ACA) were investigated by finite element method (FEM). The solid conductive particles are made of pure Ni ...The deformation behavior and the contact area of conductive particles in anisotropically conductive adhesives (ACA) were investigated by finite element method (FEM). The solid conductive particles are made of pure Ni and Cu. The results indicate that the deformation of the conductive particles is inhomogeneous during fabrication. When the reduction in height is small the deformation concentrates in the area near the contact area. As the reduction in height increases, the strain in the area near the contact area increases, and the metal flows toward the circumference, resulting in the increase of the contact area between the conductive particles and pad. The higher the degree of deformation, the larger the contact area. The regression equations were offered to express the relations between the bounding force and the contact area or the reduction in height. An approach of how to obtain the maximum contact area in ACA was discussed.展开更多
The dynamic responses and generated voltage in a curved sandwich beam with glass reinforced laminate(GRL)layers and a pliable core in the presence of a piezoelectric layer under low-velocity impact(LVI)are investigate...The dynamic responses and generated voltage in a curved sandwich beam with glass reinforced laminate(GRL)layers and a pliable core in the presence of a piezoelectric layer under low-velocity impact(LVI)are investigated.The current study aims to carry out a dynamic analysis on the sandwich beam when the impactor hits the top face sheet with an initial velocity.For the layer analysis,the high-order shear deformation theory(HSDT)and Frostig's second model for the displacement fields of the core layer are used.The classical non-adhesive elastic contact theory and Hunter's principle are used to calculate the dynamic responses in terms of time.In order to validate the analytical method,the outcomes of the current investigation are compared with those gained by the experimental tests carried out by other researchers for a rectangular composite plate subject to the LVI.Finite element(FE)simulations are conducted by means of the ABAQUS software.The effects of the parameters such as foam modulus,layer material,fiber angle,impactor mass,and its velocity on the generated voltage are reviewed.展开更多
基金The project supported by the National Natural Science Foundation of China (10525210 and 10121202)the 973 Program
文摘We develop a two dimensional model of a vesicle adhered on a curved substrate via long-range molecular interactions while subjected to a detachment force. The relationship between the force and displacement of the vesicle is investigated as a function of the substrate shape. It is shown that both the force- displacement relationship and the maximum force at pull-off are significantly dependent on the substrate shape. The results suggest that probes with different tip shapes may be designed for cell manipulation. For example, we demonstrate that a vesicle can be pulled off a fiat surface using a probe with a curved tip.
基金The project supported by the National Natural Science Foundation of China (10172050,90205022)Key Grant Project of Chinese MoE (0306)
文摘With the rapid development of Micro-Electro-Mechanical System(MEMS),we enter a field in which the surface effects have dominated many of the micro-scale phenomena,and the adhesive contact is one of the focuses.In this paper,a feasible model for finite element computation is presented via a macroscopic and microscopic combination approach,in which the adhesive forces are simulated by some non-linear spring elements considering the softening stage.Two basic problems concerning the adhesion effect were considered;through specific quantitative analysis,the results show a consistency with the current elastic continuum theories of adhesion and a brief investigation into the effects of adhesion on plastic deformation and tangential contact will be carried out as well.
基金supported by the National Natural Science Foundation of China(12272269,11972257,12061055,and 11832014)the China Scholarship Council(CSC),and the Fundamental Research Funds for the Central Universities(22120180223).
文摘The classical adhesive contact models belong to isothermal adhesion theories,where the effect of temperature on adhesion was neglected.However,a number of experimental results indicated that the adhesion behaviors can be significantly affected by temperature.In this paper,the two-dimensional non-slipping anisothermal adhesion behaviors between two orthotropic elastic cylinders are investigated within the framework of the Johnson-Kendall-Roberts theory.The stated problem is reduced to the coupled singular integral equations by virtue of the Fourier integral transform,which are solved analytically with the analytical function theory.The closed-form solutions for the stress fields in the presence of thermoelastic effect are obtained.The stable equilibrium state of contact system is determined by virtue of the Griffith energy balance.The effect of temperature difference on adhesion behaviors between orthotropic solids is discussed.It is found that the difference between the oscillatory and non-oscillatory solutions increases with increasing the degree of anisotropy of orthotropic materials.The oscillatory solution cannot be well approximated by the non-oscillatory solution for the orthotropic materials with relatively high anisotropy.
基金supported by the National Key Basic Research Program (No.2012CB937500)Natural Science Foundation of China (No.11572216)
文摘Adhesion has been demonstrated to play an important role in contact and friction between objects at small scales. While various models have been established for adhesive contact under normal forces, studies on the adhesive contact under tangential force have been far fewer, which if any, are mostly confined to the non-slipping situations. In the present work, a model has been proposed for adhesive contact with local sliding under tangential forces. Herein, the onset of local sliding in adhesive contact has been addressed by assuming the nucleation of dislocations. By analogy with the emission of dislocations at a crack tip, the critical tangential force for the onset of sliding has been determined, and its effect on the evolution of contact size has also been studied. Comparison with relevant experiments has verified the validity of the present model.
文摘The deformation behavior and the contact area of conductive particles in anisotropically conductive adhesives (ACA) were investigated by finite element method (FEM). The solid conductive particles are made of pure Ni and Cu. The results indicate that the deformation of the conductive particles is inhomogeneous during fabrication. When the reduction in height is small the deformation concentrates in the area near the contact area. As the reduction in height increases, the strain in the area near the contact area increases, and the metal flows toward the circumference, resulting in the increase of the contact area between the conductive particles and pad. The higher the degree of deformation, the larger the contact area. The regression equations were offered to express the relations between the bounding force and the contact area or the reduction in height. An approach of how to obtain the maximum contact area in ACA was discussed.
文摘The dynamic responses and generated voltage in a curved sandwich beam with glass reinforced laminate(GRL)layers and a pliable core in the presence of a piezoelectric layer under low-velocity impact(LVI)are investigated.The current study aims to carry out a dynamic analysis on the sandwich beam when the impactor hits the top face sheet with an initial velocity.For the layer analysis,the high-order shear deformation theory(HSDT)and Frostig's second model for the displacement fields of the core layer are used.The classical non-adhesive elastic contact theory and Hunter's principle are used to calculate the dynamic responses in terms of time.In order to validate the analytical method,the outcomes of the current investigation are compared with those gained by the experimental tests carried out by other researchers for a rectangular composite plate subject to the LVI.Finite element(FE)simulations are conducted by means of the ABAQUS software.The effects of the parameters such as foam modulus,layer material,fiber angle,impactor mass,and its velocity on the generated voltage are reviewed.