Some basic properties of granules,including the granule size distribution,packed-bed permeability,and chemical composition of the adhering layer,were investigated in this study for four iron ore blends consisting of 5...Some basic properties of granules,including the granule size distribution,packed-bed permeability,and chemical composition of the adhering layer,were investigated in this study for four iron ore blends consisting of 5wt%,25wt%,and 45wt%ultrafine magnetite and 25wt%ultrafine hematite concentrates.The effects of varying the sinter basicity(CaO/SiO2 mass ratio=1.4 to 2.2)and adding ultrafine concentrates on the variation of the adhering-layer composition and granule microstructure were studied.Moreover,the effect of adhering-layer compositional changes on sintering reactions was discussed in combination with pot sintering results of ore blends.Increasing sinter basicity led to an increase in the basicities of both the adhering layer and the fine part of the sinter mix,which were higher than the overall sinter basicity.When the sinter chemistry was fixed and fine Si-bearing materials(e.g.,quartz sand)were used,increasing the amount of ultrafine ores in the ore blends tended to reduce the adhering-layer basicity and increase the SiO2 content in both the adhering layer and the fine part of the sinter mix,which will induce the formation of low-strength bonding phases and the deterioration of sinter strength.The adhering-layer composition in granules can be estimated in advance from the compositions of the-1 mm fractions of the raw materials.展开更多
During the forming process of the free-standing structure or the functional cavity when releasing the high aspect ratio sacrificial layer, such structures tend to stick to the substrate due to capillary force. This pa...During the forming process of the free-standing structure or the functional cavity when releasing the high aspect ratio sacrificial layer, such structures tend to stick to the substrate due to capillary force. This paper describes the application of pull-in length conception as design rules to a novel 'dimpled' method in releasing sacrificial layer. Based on the conception of pull-in length in adhering Phenomenon, the fabrication and releasing sacrificial layer methods using micro bumps based on the silicon substrate were presented. According to the thermal isolation performances of one kind of micro electromechanical system device thermal shear stress sensor, the sacrificial layers were validated to be successfully released.展开更多
The appearance of adhenng layer formed on tool face, its composition and distributionare analysed when Ca-S free-cutting stainless steel is machined. Cutting temperature field and itsrelation with formation of the lay...The appearance of adhenng layer formed on tool face, its composition and distributionare analysed when Ca-S free-cutting stainless steel is machined. Cutting temperature field and itsrelation with formation of the layer is also studied. The result shows that, the layer can be formed under proper temperature condition, the stable cutting temperature field keeps the stable layer, itsthickness and composition distribution along rake face depend on the corresponding cutting tem-perature field. The theoretical model of the layer formation is set up.展开更多
The nitrided layer on Ti6A14V substrate was prepared by the plasma nitriding technique. The sample was characterized by X-ray diffraction (XRD), glow discharge optical emission spectroscopy (GDOES), X-ray photoele...The nitrided layer on Ti6A14V substrate was prepared by the plasma nitriding technique. The sample was characterized by X-ray diffraction (XRD), glow discharge optical emission spectroscopy (GDOES), X-ray photoelectron spectroscopy (XPS), and rough-meter. X- ray diffraction analysis reveals that TiN, Ti2N and Ti phase exist in the nitrided layer subsurface. GDOES analysis shows the thickness of the nitrided layer is about 3 ~tm. XPS analysis shows that there is higher N, lower A1 and lower V in the nitrided layer surface than in the Ti6A14V surface. Rough-meter analysis results show the roughness of the nitrided layer is greater than that of Ti6A14V alloy base. The bacteria adherence property of the nitrided layer on Ti6A14V substrate on the Streptococcus mutans was investigated and compared with that of Ti6A14V alloy by fluorescence microscope. It shows that the nitrided layer inhibits the bacteria adherence.展开更多
Two methods used to grow adherent coatings, roughening of the surface for mechanical interlocking and the use of chemically compatible interlayers having intermediate thermal expansion coefficients are analyzed numeri...Two methods used to grow adherent coatings, roughening of the surface for mechanical interlocking and the use of chemically compatible interlayers having intermediate thermal expansion coefficients are analyzed numerically with the aid of phase diagram. Calculations indicate that more roughness and smaller periodicity of the substrate surface will increase the interfacial area and thus enhance the adherence strength of the coating. The phase diagram shows that an intermediate layer with a proper composition gradient from the substrate to the film will relax the thermal stress at the interface effectively.展开更多
基金Financial supports from the National Torch Program of China (No.2011GH561685)Hunan Provincial Co-innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources are sincerely acknowledged
文摘Some basic properties of granules,including the granule size distribution,packed-bed permeability,and chemical composition of the adhering layer,were investigated in this study for four iron ore blends consisting of 5wt%,25wt%,and 45wt%ultrafine magnetite and 25wt%ultrafine hematite concentrates.The effects of varying the sinter basicity(CaO/SiO2 mass ratio=1.4 to 2.2)and adding ultrafine concentrates on the variation of the adhering-layer composition and granule microstructure were studied.Moreover,the effect of adhering-layer compositional changes on sintering reactions was discussed in combination with pot sintering results of ore blends.Increasing sinter basicity led to an increase in the basicities of both the adhering layer and the fine part of the sinter mix,which were higher than the overall sinter basicity.When the sinter chemistry was fixed and fine Si-bearing materials(e.g.,quartz sand)were used,increasing the amount of ultrafine ores in the ore blends tended to reduce the adhering-layer basicity and increase the SiO2 content in both the adhering layer and the fine part of the sinter mix,which will induce the formation of low-strength bonding phases and the deterioration of sinter strength.The adhering-layer composition in granules can be estimated in advance from the compositions of the-1 mm fractions of the raw materials.
文摘During the forming process of the free-standing structure or the functional cavity when releasing the high aspect ratio sacrificial layer, such structures tend to stick to the substrate due to capillary force. This paper describes the application of pull-in length conception as design rules to a novel 'dimpled' method in releasing sacrificial layer. Based on the conception of pull-in length in adhering Phenomenon, the fabrication and releasing sacrificial layer methods using micro bumps based on the silicon substrate were presented. According to the thermal isolation performances of one kind of micro electromechanical system device thermal shear stress sensor, the sacrificial layers were validated to be successfully released.
文摘The appearance of adhenng layer formed on tool face, its composition and distributionare analysed when Ca-S free-cutting stainless steel is machined. Cutting temperature field and itsrelation with formation of the layer is also studied. The result shows that, the layer can be formed under proper temperature condition, the stable cutting temperature field keeps the stable layer, itsthickness and composition distribution along rake face depend on the corresponding cutting tem-perature field. The theoretical model of the layer formation is set up.
基金Funded by the National Natural Science Foundation of China(No.51171125)the National High-Tech Research and Development Program of China(863 Program)(No.2007AAO3Z521)+3 种基金the Natural Science Foundation of of Shanxi Province(No.2012011021-4,2012021021-8)the Shanxi Province Foundation for Returned Overseas Scholars(No 2011-038)the Shanxi Province Programs for Science and Technology Development(20110321051)the Taiyuan University of Technology Graduate Innovation Fund
文摘The nitrided layer on Ti6A14V substrate was prepared by the plasma nitriding technique. The sample was characterized by X-ray diffraction (XRD), glow discharge optical emission spectroscopy (GDOES), X-ray photoelectron spectroscopy (XPS), and rough-meter. X- ray diffraction analysis reveals that TiN, Ti2N and Ti phase exist in the nitrided layer subsurface. GDOES analysis shows the thickness of the nitrided layer is about 3 ~tm. XPS analysis shows that there is higher N, lower A1 and lower V in the nitrided layer surface than in the Ti6A14V surface. Rough-meter analysis results show the roughness of the nitrided layer is greater than that of Ti6A14V alloy base. The bacteria adherence property of the nitrided layer on Ti6A14V substrate on the Streptococcus mutans was investigated and compared with that of Ti6A14V alloy by fluorescence microscope. It shows that the nitrided layer inhibits the bacteria adherence.
文摘Two methods used to grow adherent coatings, roughening of the surface for mechanical interlocking and the use of chemically compatible interlayers having intermediate thermal expansion coefficients are analyzed numerically with the aid of phase diagram. Calculations indicate that more roughness and smaller periodicity of the substrate surface will increase the interfacial area and thus enhance the adherence strength of the coating. The phase diagram shows that an intermediate layer with a proper composition gradient from the substrate to the film will relax the thermal stress at the interface effectively.