碱基编辑技术(base editing)是基于CRISPR/Cas系统发展起来的新型靶基因修饰技术,目前依据碱基修饰酶的不同可分为胞嘧啶碱基编辑器(cytosine base editor,CBE)和腺嘌呤碱基编辑器(adenine base editor,ABE)。这两类碱基编辑系统利用胞...碱基编辑技术(base editing)是基于CRISPR/Cas系统发展起来的新型靶基因修饰技术,目前依据碱基修饰酶的不同可分为胞嘧啶碱基编辑器(cytosine base editor,CBE)和腺嘌呤碱基编辑器(adenine base editor,ABE)。这两类碱基编辑系统利用胞嘧啶脱氨酶或人工进化的腺嘌呤脱氨酶对靶位点进行精准的碱基编辑,最终可以分别实现C-T(G-A)或A-G(T-C)的碱基替换。碱基编辑技术自2016年被开发以来,因其高效、不依赖DNA双链断裂产生、无需供体DNA参与等优势,已经成功应用在各种动物、植物及其他生物中,为基因治疗及精准作物育种等领域提供了重要技术支撑。本文从碱基编辑技术的特点、开发过程、优化、应用、脱靶效应及改善策略等方面进行了系统介绍,最后对未来需要迫切解决的一些问题进行了分析和展望,以期为相关领域的科研人员进一步了解、使用及优化碱基编辑系统提供参考。展开更多
碱基编辑技术是以CRISPR/Cas系统为基础开发的一种能够对基因组进行定点精准编辑的新技术,包括胞嘧啶碱基编辑系统(cytosine base editor,CBE),腺嘌呤碱基编辑系统(adenine base editor,ABE)以及引导编辑系统(primeediting,PE)。胞嘧啶...碱基编辑技术是以CRISPR/Cas系统为基础开发的一种能够对基因组进行定点精准编辑的新技术,包括胞嘧啶碱基编辑系统(cytosine base editor,CBE),腺嘌呤碱基编辑系统(adenine base editor,ABE)以及引导编辑系统(primeediting,PE)。胞嘧啶碱基编辑系统可以将基因组靶位点处的C/G转换为T/A,腺嘌呤碱基编辑系统可以将靶位点处的A/T转变为G/C,而引导编辑系统则可以实现所有12种类型(C-T、G-A、A-G、T-C、C-A、C-G、G-C、G-T、A-C、A-T、T-A、T-G)碱基的任意替换以及碱基的插入和删除。本文中系统介绍了这3种碱基编辑系统的原理、开发过程、各自的优缺点以及在作物遗传改良中的应用和发展,并展望了碱基编辑技术在农作物育种中的应用前景。展开更多
文摘碱基编辑技术(base editing)是基于CRISPR/Cas系统发展起来的新型靶基因修饰技术,目前依据碱基修饰酶的不同可分为胞嘧啶碱基编辑器(cytosine base editor,CBE)和腺嘌呤碱基编辑器(adenine base editor,ABE)。这两类碱基编辑系统利用胞嘧啶脱氨酶或人工进化的腺嘌呤脱氨酶对靶位点进行精准的碱基编辑,最终可以分别实现C-T(G-A)或A-G(T-C)的碱基替换。碱基编辑技术自2016年被开发以来,因其高效、不依赖DNA双链断裂产生、无需供体DNA参与等优势,已经成功应用在各种动物、植物及其他生物中,为基因治疗及精准作物育种等领域提供了重要技术支撑。本文从碱基编辑技术的特点、开发过程、优化、应用、脱靶效应及改善策略等方面进行了系统介绍,最后对未来需要迫切解决的一些问题进行了分析和展望,以期为相关领域的科研人员进一步了解、使用及优化碱基编辑系统提供参考。
文摘碱基编辑技术是以CRISPR/Cas系统为基础开发的一种能够对基因组进行定点精准编辑的新技术,包括胞嘧啶碱基编辑系统(cytosine base editor,CBE),腺嘌呤碱基编辑系统(adenine base editor,ABE)以及引导编辑系统(primeediting,PE)。胞嘧啶碱基编辑系统可以将基因组靶位点处的C/G转换为T/A,腺嘌呤碱基编辑系统可以将靶位点处的A/T转变为G/C,而引导编辑系统则可以实现所有12种类型(C-T、G-A、A-G、T-C、C-A、C-G、G-C、G-T、A-C、A-T、T-A、T-G)碱基的任意替换以及碱基的插入和删除。本文中系统介绍了这3种碱基编辑系统的原理、开发过程、各自的优缺点以及在作物遗传改良中的应用和发展,并展望了碱基编辑技术在农作物育种中的应用前景。
文摘CRISPR系统能够在基因组DNA中完成精准编辑,但依赖于细胞内的同源重组(Homologydirected recombination,HDR)修复途径,且效率极低。基于CRISPR/Cas9系统开发的碱基编辑技术(Base editing)通过将失去切割活性的核酸酶与不同碱基脱氨基酶融合,构建了两套碱基编辑系统(Baseeditors,BE):胞嘧啶碱基编辑器(Cytosine base editor,CBE)和腺嘌呤碱基编辑器(Adenine base editor,ABE)。这两类编辑器分别能够在不产生DNA双链断裂的前提下在基因靶位点完成C>T (G>A)或A>G (T>C)的替换,最终实现精准的碱基编辑。目前碱基编辑技术已经广泛应用于基因治疗、动物模型构建、精准动物育种和基因功能分析等领域,为基础和应用研究提供了强大的技术工具。文中概括了碱基编辑技术的研发过程、技术优势、应用现状、存在问题及改进策略,以期为相关领域的科研人员了解和使用碱基编辑系统提供参考。